Going Fast and Cheap: How We Made Anna Autoscale

Vikram Sreekanti blog, Database Systems, Distributed Systems, Open Source, Systems, Uncategorized 0 Comments

Background: In an earlier blog post, we described a system called Anna, which used a shared-nothing, thread-per-core architecture to achieve lightning-fast speeds by avoiding all coordination mechanisms. Anna also used lattice composition to enable a rich variety of coordination-free consistency levels. The first version of Anna blew existing in-memory KVSes out of the water: Anna is up to 700x faster than Masstree, an earlier state-of-the-art research KVS, and up to 800x faster than Intel’s “lock-free” TBB hash table. You can find the previous blog post here and the full paper here. We refer to that version of Anna as “Anna v0.” In this post, we describe how we extended the fastest KVS in the cloud to be extremely cost-efficient and …

Exploratory data analysis of genomic datasets using ADAM and Mango with Apache Spark on Amazon EMR (AWS Big Data Blog Repost)

Alyssa Morrow blog, Distributed Systems, Open Source, Projects, Uncategorized 0 Comments

Note: This blogpost is replicated from the AWS Big Data Blog and can be found here. As the cost of genomic sequencing has rapidly decreased, the amount of publicly available genomic data has soared over the past couple of years. New cohorts and studies have produced massive datasets consisting of over 100,000 individuals. Simultaneously, these datasets have been processed to extract genetic variation across populations, producing mass amounts of variation data for each cohort. In this era of big data, tools like Apache Spark have provided a user-friendly platform for batch processing of large datasets. However, to use such tools as a sufficient replacement to current bioinformatics pipelines, we need more accessible and comprehensive APIs for processing genomic data. We …

MLPerf: SPEC for ML

David Patterson Deep Learning, News, Open Source, Optimization, Reinforcement Learning, Systems, Uncategorized 0 Comments

The RISE Lab at UC Berkeley today joins Baidu, Google, Harvard University, and Stanford University to announce a new benchmark suite for machine learning called MLPerf at the O’Reilly AI conference in New York City (see https://mlperf.org/). The MLPerf effort aims to build a common set of benchmarks that enables the machine learning (ML) field to measure system performance eventually for both training and inference from mobile devices to cloud services. We believe that a widely accepted benchmark suite will benefit the entire community, including researchers, developers, builders of machine learning frameworks, cloud service providers, hardware manufacturers, application providers, and end users. Historical Inspiration. We are motivated in part by the System Performance Evaluation Cooperative (SPEC) benchmark for general-purpose computing that drove rapid, …

Distributed Policy Optimizers for Scalable and Reproducible Deep RL

Eric Liang blog, Deep Learning, Distributed Systems, Open Source, Ray, Reinforcement Learning 0 Comments

In this blog post we introduce Ray RLlib, an RL execution toolkit built on the Ray distributed execution framework. RLlib implements a collection of distributed policy optimizers that make it easy to use a variety of training strategies with existing reinforcement learning algorithms written in frameworks such as PyTorch, TensorFlow, and Theano. This enables complex architectures for RL training (e.g., Ape-X, IMPALA), to be implemented once and reused many times across different RL algorithms and libraries. We discuss in more detail the design and performance of policy optimizers in the RLlib paper. What’s next for RLlib In the near term we plan to continue building out RLlib’s set of policy optimizers and algorithms. Our aim is for RLlib to serve …

Announcing Ground v0.1

Vikram Sreekanti blog, Ground, News, Open Source, Projects, Systems

We’re excited to be releasing v0.1 of the Ground project! Ground is a data context service. It is a central repository for all the information surrounding the use of data in an organization. Ground concerns itself with what data an organization has, where that data is, who (both human beings and software systems) is touching that data, and how that data is being modified and described. Above all, Ground aims to be an open-source, vendor neutral system that provides users an unopinionated metamodel and set of APIs that allow them to think about and interact with data context generated in their organization. Ground has many use cases, but we’re focused on two specific ones at present: Data Inventory: large organizations …

RISELab Announces 3 Open Source Releases

Joe Hellerstein blog, Clipper, Ground, Open Source, Projects, Ray, Systems

Part of the Berkeley tradition—and the RISELab mission—is to release open source software as part of our research agenda. Six months after launching the lab, we’re excited to announce initial v0.1 releases of three RISElab open-source systems: Clipper, Ground and Ray. Clipper is an open-source prediction-serving system. Clipper simplifies deploying models from a wide range of machine learning frameworks by exposing a common REST interface and automatically ensuring low-latency and high-throughput predictions.  In the 0.1 release, we focused on reliable support for serving models trained in Spark and Scikit-Learn.  In the next release we will be introducing support for TensorFlow and Caffe2 as well as online-personalization and multi-armed bandits.  We are providing active support for early users and will be following Github issues …