NeuroCard: One Cardinality Estimator for All Tables

Frank Sifei Luan

Query optimizers rely on accurate cardinality estimates to produce good execution plans. Despite decades of research, existing cardinality estimators are inaccurate for complex queries, due to making lossy modeling assumptions and not capturing inter-table correlations. In this work, we show that it is possible to learn the correlations across all tables in a database without any independence assumptions. We present NeuroCard, a join cardinality estimator that builds a single neural density estimator over an entire database. Leveraging join sampling and modern deep autoregressive models, NeuroCard makes no inter-table or inter-column independence assumptions in its probabilistic modeling. NeuroCard achieves orders of magnitude higher accuracy than the best prior methods (a new state-of-the-art result of 8.5x maximum error on JOB-light), scales to dozens of tables, while being compact in space (several MBs) and efficient to construct or update (seconds to minutes).

Authors: Zongheng Yang, Amog Kamsetty, Frank Sifei Luan, Eric Liang, Ion Stoica

What Is the Role of Machine Learning in Databases?

Zongheng Yang blog, Database Systems, Deep Learning, Systems 0 Comments

(This article was authored by Sanjay Krishnan, Zongheng Yang, Joe Hellerstein, and Ion Stoica.) What is the role of machine learning in the design and implementation of a modern database system? This question has sparked considerable recent introspection in the data management community, and the epicenter of this debate is the core database problem of query optimization, where the database system finds the best physical execution path for an SQL query. The au courant research direction, inspired by trends in Computer Vision, Natural Language Processing, and Robotics, is to apply deep learning; let the database learn the value of each execution strategy by executing different query plans repeatedly (an homage to Google’s robot “arm farm”) rather through a pre-programmed analytical…