For folks who care about what’s possible in distributed computing: Peter Alvaro and I wrote an introduction to the CALM Theorem and subsequent work that is now up on arXiv. The CALM Theorem formally characterizes the class of programs that can achieve distributed consistency without the use of coordination. — Joe Hellerstein (Cross-posted from databeta.wordpress.com.) I spent a good fraction of my academic life in the last decade working on a deeper understanding of how to program the cloud and other large-scale distributed systems. I was enormously lucky to collaborate with and learn from amazing friends over this period in the BOOM project, and see our work picked up and extended by new friends and colleagues. Our research was motivated by…

## Capacity Releasing Diffusion for Speed and Locality

Diffusions and related random walk procedures are of central importance in many areas of machine learning, data analysis, and applied mathematics. Because they spread mass agnostically at each step in an iterative manner, they can sometimes spread mass “too aggressively,” thereby failing to find the “right” clusters. We introduce a novel Capacity Releasing Diffusion (CRD) Process, which is both faster and stays more local than the classical spectral diffusion process. As an application, we use our CRD Process to develop an improved local algorithm for graph clustering. Our local graph clustering method can find local clusters in a model of clustering where one begins the CRD Process in a cluster whose vertices are connected better internally than externally by an more…

**Authors:** Di Wang, Kimon Fountoulakis, Monika Henzinger, Michael W. Mahoney, Satish Rao

## Decoding from Pooled data: Phase Transitions of Message Passing

We consider the problem of decoding a discrete signal of categorical variables from the observation of several histograms of pooled subsets of it. We present an Approximate Message Passing (AMP) algorithm for recovering the signal in the random dense setting where each observed histogram involves a random subset of entries of size proportional to n. We characterize the performance of the algorithm in the asymptotic regime where the number of observations m tends to infinity proportionally to n, by deriving the corresponding State Evolution (SE) equations and studying their dynamics. We initiate the analysis of the multi-dimensional SE dynamics by proving their convergence to a fixed point, along with some further properties of the iterates. The analysis reveals sharp phase more…

**Authors:** Aaditya Ramdas, Ahmed El Alaoui, Michael Jordan, Florent Krzakala, Lenka Zdeborova

## Decoding from Pooled data: Sharp Information-Theoretic Bounds

Consider a population consisting of n individuals, each of whom has one of d types (e.g. their blood type, in which case d=4). We are allowed to query this database by specifying a subset of the population, and in response we observe a noiseless histogram (a d-dimensional vector of counts) of types of the pooled individuals. This measurement model arises in practical situations such as pooling of genetic data and may also be motivated by privacy considerations. We are interested in the number of queries one needs to unambiguously determine the type of each individual. In this paper, we study this information-theoretic question under the random, dense setting where in each query, a random subset of individuals of size proportional more…

**Authors:** Ahmed El Alaoui, Aaditya Ramdas, Michael Jordan, Florent Krzakala, Lenka Zdeborova