The RISE Lab at UC Berkeley today joins Baidu, Google, Harvard University, and Stanford University to announce a new benchmark suite for machine learning called MLPerf at the O’Reilly AI conference in New York City (see https://mlperf.org/). The MLPerf effort aims to build a common set of benchmarks that enables the machine learning (ML) field to measure system performance eventually for both training and inference from mobile devices to cloud services. We believe that a widely accepted benchmark suite will benefit the entire community, including researchers, developers, builders of machine learning frameworks, cloud service providers, hardware manufacturers, application providers, and end users. Historical Inspiration. We are motivated in part by the System Performance Evaluation Cooperative (SPEC) benchmark for general-purpose computing that drove rapid,…