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Abstract—Model parallelism is a standard paradigm to decou-
ple a deep neural network (DNN) into sub-nets when the model
is large. Recent advances in class parallelism significantly reduce
the communication overhead of model parallelism to a single
floating-point number per iteration. However, traditional fault-
tolerance schemes, when applied to class parallelism, require
storing the entire model on the hard disk. Thus, these schemes are
not suitable for soft and frequent system noise such as stragglers
(temporarily slow worker machines). In this paper, we propose
an erasure-coding based redundant computing technique called
robust class parallelism to improve the error resilience of model
parallelism. We show that by introducing slight overhead in the
computation at each machine, we can obtain robustness to soft
system noise while maintaining the low communication overhead
in class parallelism. More importantly, we show that on standard
classification tasks, robust class parallelism maintains the state-
of-the-art performance.

Index Terms—Distributed computing, deep learning, system
robustness, computation redundancy.

I. INTRODUCTION

The increasing size of cutting-edge models poses a chal-
lenge to the limited memory capacity on GPUs. To deal with
large models that cannot fit into a single GPU, implementing
training and testing using model parallelism [1] is standard
practice. A critical drawback of model parallelism, however,
is the increased communication cost that arises from both
frequent message passing and the large size of messages
exchanged (i.e., because the exchanged feature maps can be
much larger than network weights). To alleviate this problem,
class parallelism [2] pushes the limit of reducing communica-
tion overhead by transmitting a single floating point number
per machine. The main idea of class-parallelism is to let each
partial model only train on a particular class of data. In this
way, parallel training and inference can be achieved with
minimum communication overhead.

The novel class parallel methods call for new designs for
resilience against system noise. For example, One common
problem in distributed setups is the existence of persistent
stragglers, which are compute nodes that are significantly
slower than others due to unpredictable factors impacting
their compute and communication time [3]. The straggler
problem is even more evident in today’s large-scale computing
systems; for instance, in serverless computing, about 2% of
3500 commodity machines are observed to be stragglers [4].
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Left untreated, these stragglers severely impact latency, as the
total execution time depends on the slowest machine.

Another form of system noise is machine preemption in
elastic compute [5], where inexpensive machines can leave
(when preempted) in the middle of a job on a short notice.
Thus, longer jobs such as training for large DNNs are vulnera-
ble to this kind of noise. The preemption mechanism is widely
applied to cluster management, such as in YARN [6] and
Kubernetes [7]. The machines to be preempted are determined
by the cluster scheduler and are not known to the tenants in
advance [8]. Traditional fault-tolerance schemes such as disk
checkpointing require the entire system to wait for the recovery
of the failures, causing high disk I/O and long latency.

In this paper, we propose a robust class-parallel scheme
for both training and prediction serving. The main idea of
our scheme is to introduce redundancy in class parallelism by
increasing classes assigned to each machine. In our scheme,
we can safely ignore the preemption type of failures (during
training) or the slow machines in a system with stragglers,
provided that the number of preemptions or stragglers is below
a certain threshold determined by the amount of redundancy.
Note that redundancy techniques on deep learning have been
studied in [9], [10]. Compared to [9], robust class parallelism
does not need to wait for a batch of input samples to start
prediction serving. It also significantly reduces the communi-
cation overhead compared to model parallelism [10].

The primary focus of the paper is on the
inference/prediction-serving stage [11]. However, robust
class parallelism also applies to the training stage to provide
speed-up from parallelism and reduced communication. Using
a class-parallel scheme, the distributed training of a partial
model at each machine is independent of others, and the
preemption or the slow machines only affect the local training.
During inference, the model prediction time can be reduced
due to parallel gain while providing straggler resiliency,
thus resulting in greater speedups. More importantly, robust
class parallelism can preserve the classification accuracy
even in the precence of system noise, such as stragglers and
preemptions.

II. ROBUST CLASS PARALLELISM
First, we present the class parallelism technique [2] which

was designed to reduce communication overhead in model-
parallel training of DNNs. Then, we introduce the robust class
parallelism and show its robustness to system noise through
experiments on popular computer vision datasets.
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Fig. 1. (Robust class parallelism) The figure shows a cyclic class partitioning
scheme. The redundant factor is 3, and the final result can be obtained even
if 2 machines are unavailable.

A. Class-parallel model partitioning

Class parallelism can reduce the communication cost while
maintaining the small memory footprint in model parallelism.
Specifically, the technique has two phases:

• Phase 1: Train the entire model (replicated at each
machine) for a short time using data parallelism. Then,
assign one class of data to one machine and prune the
model on that machine based on the activation of the
particular class.

• Phase 2: Retrain the partial model on every single ma-
chine to be a binary classifier (called a string according
to [2]), predicting whether the data belongs to the class
assigned to this machine or not.

Class parallelism has two advantages: (1) Reduced compu-
tation at each machine, coming from class-based data par-
titioning and network pruning; (2) Reduced communication
compared to model parallelism, coming from the fact that
decoupled binary classifiers do not communicate among each
other. The only single-number communication happens when
aggregating the final output class prediction, i.e., each binary
classifier outputs a single number regarding the softmax score
of whether the input sample belongs to this specific class.

B. Robust class parallelism

Here, we introduce parity strings which can take more than
one classes at each machine. That is, in Phase 1, we prune each
string based on the activation of r > 1 classes of data, and
in Phase 2, we retrain each string using the same redundant
data as well. Instead of a single floating-point number, each
machine now communicates r + 1 numbers during the com-
bination phase, in which the last number denotes the softmax
score of the NOT class, the union of all classes not handled at
this machine. In Fig. 1, we illustrate a cyclic class partitioning
scheme, in which each machine takes r = 3 classes. The
redundant outputs from the parity strings provide robustness
to system noise because when some machine is preempted or
is straggling, the results can be aggregated from other replicas.

More specifically, the classification score of the i-th class
can be the average from all the available replicas in the pres-
ence of system noise. Although assigning a higher redundant
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Fig. 2. Test accuracy as a function of the number of machine failures on
CIFAR10 and CIFAR100. Both normal and robust class parallelism models
are pruned to 50% size.

factor means higher robustness, it also leads to increased task
complexity and more digits to transfer at each machine.

C. Experiment results

We compare the robustness of normal and robust class
parallelism as a function of unavailable machines. From Fig.
2, robust class parallelism has higher average accuracy than
the normal one.

Experiment details: We use a ResNet110 model on CI-
FAR10 and CIFAR100. Each machine is assigned three classes
in robust class parallelism and one class in normal class
parallelism. Both the normal and robust class parallelism
models are pruned to 50% of the original size. Results on
more models will be provided in the full version.
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