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1 INTRODUCTION
Convolutional Neural Networks (ConvNets) enable computers to
excel on vision learning tasks such as image classification, object
detection. As model-size and dataset-scale are growing larger, the
serving time of a single ConvNet increases drastically. Thus, dis-
tributed serving is adopted to speedup the process by running a
single CNN over multiple machines simultaneously. Conventional
distributed approaches are data parallelism [7, 20] and model paral-
lelism [1, 8]. In data parallelism, each GPU has a full copy of the
model and do inference independently on a subset of the whole in-
put data. Model parallelism adopts a different approach: each GPU
only maintains a portion of the whole model, and communicates
intermediate results (e.g. feature-maps) during each round of model
serving.

Making faster decision on live data is becoming more and more
important. In the case like autonomous driving [4, 19], once the cam-
era captures a frame of image that contains pedestrian, it may save
people’s lives if the stop decision can be made slightly faster. Other
application scenarios like automatic stock trading using machine
learning, right now is happening in giant banks like JP Morgan [21]
and Goldman Sachs [15]. If one party can make the trading decision
several milliseconds earlier than the others, it can bring in huge
amount of profits. From a system perspective, making fast decision
on live data means faster model serving on each incoming data
item (e.g. an image, a stock’s instantaneous price).

Neither data parallelism nor model parallelism can achieve faster
serving on single data item. It is infeasible to split an atomic in-
put piece further for data parallelism. Model parallelism introduces
huge communication overhead for transferring intermediate results
(e.g. gradients, feature-maps) among the GPUs in use. To achieve
faster inference on single data item, we propose sensAI, a novel
and generic approach that distributes a single CNN into discon-
nected subnets, and achieve decent serving accuracy with negligible
communication overhead (1 float value).

sensAI achieves this extremely low communication overhead
in distributed model serving by adopting a new concept: class par-
allelism, which decouples a classification ConvNet into multiple
binary classifiers for independent, in-parallel inference. The intu-
ition behind class parallelism is, within a CNN, different neurons
(i.e. channels) are responsible for predicting different classes, and
typically only a subset of neurons is crucial for predicting one spe-
cific class probability [25]. Class parallelism can also be used with
data parallelism together by duplicating the whole set of binary
classifiers.

For image classification tasks with a small number of classes N,
e.g., CIFAR10 [16], we achieve class parallelism by pulling out N
binary classifiers from a pretrained N-way classification CNN. And
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we use all these binary classifiers to do faster, in-parallel inference
by taking the max confidence output from these models to deter-
mine the predicted class. For harder classification tasks with many
classes, e.g., ImageNet1K [23], instead of decoupling a given CNN
into 𝑁 binary classifiers, we divide the image classes into 𝑘 groups,
with each group containing𝑚 classes (𝑚 × 𝑘 = 𝑁 ). For each group
of classes, we distill a𝑚-way classifier from the base model. And
we combine the outputs from those 𝑘 smaller𝑚-way classifiers to
obtain the target 𝑁 -way classification results.

sensAI achieves decent scalability with class parallelism. Ex-
perimental results on CIFAR10 show that: for shallow CNN like
VGG-19 [24], we achieve 20x model size reduction, which leads to
6x reduction of single image inference time. For deep CNN like
ResNet-164 [13], we achieve 11x reduction on model size, which
leads to 2x speedup of model serving time per image.

2 RELATEDWORKS
Class-specific neuron analysis: Zhou et. al [26] point out that
unit ablation on a fully trained CNN model will only decrease in-
ference accuracy on certain class, and then analyze the correlation
between units ablation and its impacted class. Yu et. al [25] show the
possibility of decoupling a 10-way CNN model into ten binary clas-
sifiers. However, even these literature points out that the neurons
belonging to certain class of images are independent and can be
decoupled from original CNN model, sensAI is the first approach
to propose the concept of class parallelism and use it for in-parallel
model inference.
Network pruning: Over-parameterization is a well-known at-
tribute of convolutional neural networks [3, 9]. To reduce memory
footprints and computational cost, network pruning [12, 17, 18]
gains the most attention and is recognized as an effective way
to improve computational efficiency while maintaining roughly
the same model serving performance. sensAI also adopts network
pruning technique to pull out binary models from the original CNN.
Different from existing class-agnostic pruning methods, sensAI
uses one-shot, class-specific pruning. And sensAI can combine
class-agnostic pruning schemes [11, 12, 18] to further shrink down
the size of our binary models.
One-Vs-All (OVA) reduction: OVA machine learning model re-
duction is a general approach which reduces a multi-class learning
problem into a bunch of simpler problems solvable with binary
classifiers [5, 10]. Rifkin et. al [22] and Beygelzimer et. al [6] prove
OVA’s effectiveness via both experiments and theoretical argu-
ments. Different from traditional OVA approaches which train
binary classifiers with predefined model structure [2, 6], sensAI
learns different model structures from the fully-trained base model
for different binary classification tasks, which achieves better serv-
ing accuracy with less redundant binary models.



Guanhua Wang, Zhuang Liu, Siyuan Zhuang, Brandon Hsieh, Joseph Gonzalez, Ion Stoica

Fully-trained
CNN

Dog classifier

Cat classifier

dog?

cat?

0.2

0.6

SoftMax
Decision:

Cat

Class-specific 
pruning
(One-shot)

retrain

Active neurons

Inactive/pruned neurons

Figure 1: sensAI workflow for binary, in-parallel inference.
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Figure 2: Number of parameters v.s. test accuracy compari-
son on CIFAR10.

3 SENSAI
In sensAI, we trade more computation resources (e.g. more GPUs)
for faster inference speed on single data item. For the sake of brevity,
we limit our discussion for decoupling a CNN into binary classifiers
(no class grouping). As shown in Fig. 1, sensAI decouples a CNN
model for faster, in-parallel inference via the following 3 steps:

Class-specific pruning: Here we use activation (i.e. feature-
map) based criteria to determine the importance of neurons for each
class. After feeding all input images of one class to the fully-trained
base model, we collect activation statistics for each intermediate
neuron (i.e. channel), and based on the statistics we determine
which neurons to keep or prune with a simple criterion called
Average Percentage of Zeros (APoZ [14]). We prune out the neurons
that have large amount of zeros in their activation maps when
taking a certain class of images as input. For final classification
layer, we only keep the prediction head of the class of interest.

Retraining: After obtaining 𝑁 binary classifiers, we impose a
retraining process to regain the possibly lost model serving perfor-
mance of the original model. For each binary classifier, we form
a new retraining dataset, which consists of half positive samples
(i.e. images belong to the class), and half negative samples (i.e. ran-
domly picked images from the rest classes). We retrain each binary
classifier with binary cross-entropy (BCE) loss on its retraining
dataset.

Combining results back to 𝑁 -way predictions: After get-
ting all retrained binary models, we combine their outputs together
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Figure 3: Per-image inference time v.s. test accuracy compar-
ison on CIFAR10.

for the original mulit-way inference task. We simply apply Soft-
Max across all binary classifiers’ outputs to determine the 𝑁 -way
classification result.

4 PRELIMINARY RESULTS
We evaluate sensAI performance on CIFAR10 dataset [16] with
two popular CNNs: VGG-19 (with batch normalization) [24] and
ResNet-164 [13].

Fig. 2 depicts the relationship between decoupled binary model
size and test accuracy. One surprising finding is, by only applying
one-shot (instead of iterative) pruning and retraining, we can reduce
number of parameters in VGG-19 by 20x (Fig. 2(a)), ResNet-164 by
11x (Fig. 2(b)) with no test accuracy loss. The intuition behind this
high ratio of single-shot pruning is: we simply the inference task
from 10-way classification to 1-way. Thus, for each binary model,
the amount of inactive neurons we can prune is much more than
traditional, class-agnostic pruning over 10-way classification model.
This huge model size reduction leads to our per-image serving
time reduction by 6x on VGG-19 (Fig. 3(a)) and 2x on ResNet-164
(Fig. 3(b)).

5 CONCLUSION
This paper proposes sensAI, a fast and distributed model serving
approach on live data. By pulling out binary classifiers from the
base model, sensAI achieves model size reduction by 20x on VGG-
19, 11x on ResNet-164, which leads to reduction of per-image model
serving time by 6x on VGG-19, 2x on ResNet-164.
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