
ALICE: Autonomous Link-based Cell Scheduling for TSCH
Seohyang Kim

Department of Computer Science
Seoul National University
shkim@popeye.snu.ac.kr

Hyung-Sin Kim
Computer Science Division

University of California, Berkeley
hs.kim@cs.berkeley.edu

Chongkwon Kim
Department of Computer Science

Seoul National University
ckim@snu.ac.kr

ABSTRACT
Although low-power lossy network (LLN), at its early stage, com-
monly used asynchronous link layer protocols for simple operation
on resource-constrained nodes, development of embedded hard-
ware and time synchronization technologies made Time-Slotted
Channel Hopping (TSCH) viable in LLN (now part of IEEE 802.15.4e
standard). TSCH has the potential to be a link layer solution for LLN
due to its resilience to wireless interference (e.g., WiFi) and multi-
path fading. However, its slotted operation incurs non-trivial cell
scheduling overhead: two nodes should wake up at a time-frequency
cell together to exchange a packet. Efficient cell scheduling in dy-
namic multihop topology in wireless environments has been an
open issue, preventing TSCH’s wide adoption in practice. This work
introduces ALICE, a novel autonomous link-based cell scheduling
scheme which allocates a unique cell for each directional link (a
pair of nodes and traffic direction) by closely interacting with the
routing layer and using only local information, without any addi-
tional communication overhead. We implement ALICE on Contiki
and evaluate its effectiveness on the IoT-LAB public testbed with
68 nodes. ALICE generally outperforms Orchestra (the state-of-the-
art method) and even more so under heavy traffic and high node
density, increasing throughput by 2 times with 98.3% reliability and
reducing latency by 70%, route changes by 95%, and radio duty cycle
by 35%. ALICE can serve as an autonomous scheduling framework,
which paves the way for TSCH-based LLN to go on.

CCS CONCEPTS
• Networks → Link-layer protocols; Cross-layer protocols; Net-
work performance evaluation;

KEYWORDS
Internet of Things, Low-power Lossy Network, TSCH, RPL, IPv6,
Scheduling

ACM Reference Format:
Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim. 2019. ALICE: Au-
tonomous Link-based Cell Scheduling for TSCH. In The 18th ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN
’19), April 16–18, 2019, Montreal, Canada.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3302506.3310394

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IPSN ’19, April 16–18, 2019, Montreal, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6284-9/19/04. . . $15.00
https://doi.org/10.1145/3302506.3310394

1 INTRODUCTION
Low power and lossy network (LLN) comprised of many resource-
constrained embedded devices aims to support various applications,
such as environment monitoring [6], factory automation [28], smart
hospital [20], and smart market [18]. Due to the limited capability
of embedded devices, the initial paradigm for LLNwas that it should
use simple, lightweight, and asynchronous protocols, which are
significantly different from those used in conventional networks
such as TCP/IP, LTE, and WiFi. However, the development of low-
cost hardware and low-power network technologies has shifted
this paradigm [19]. For example, IETF standardized 6LoWPAN in
2007 [46] and IPv6 Routing Protocol for LLNs (RPL) in 2012 [29],
enabling resource-constrained nodes to exchange IPv6 packets in
LLN and bringing Internet of Things (IoT).

Not only that, along with the latest time synchronization tech-
niques with embedded devices [49][14][5], it has been more com-
monplace for LLN to exploit synchronous link layer protocols for
energy efficiency and reliability. Specifically, IEEE recently stan-
dardized Time-Slotted Channel Hopping (TSCH) [51] as part of the
IEEE 802.15.4e standard [50]. It provides synchronous node wake-
up for low energy consumption and frequency channel hopping
for reliable communication over lossy wireless links [40]. Due to
its potential, TSCH has received a significant attention from both
industry and academia: WirelessHART [44] and ISA100.11a [2] are
designed based on TSCH to support industrial applications, and
some companies, such as Analog Devices Inc., provide industrial
solutions based on TSCH. It is also implemented on popular open
sourced OSes, such as Contiki [4] and OpenWSN [41], which has
spawned substantial research.

Challenges (Cell Scheduling). TSCH converts wireless channel
into two-dimensional (time and frequency) space called slotframe
which consists of multiple cells. Each node should properly sched-
ule activation or deactivation of each cell to send/receive packets
to/from its neighbor nodes (more details in Section 2). This cell
scheduling issue is one of the subtlest aspects of TSCH, which
heavily impacts reliability and latency of packet delivery and radio
duty-cycle. Given that LLN has a strict resource constraint and
time-varying link characteristics, a cell scheduling method should
be adaptive to dynamic multihop network topology with minimal
scheduling overhead.

A number of studies have investigated this issue, categorized into
(1) centralized, (2) distributed, and (3) autonomous approaches (Sec-
tion 6). The centralized approaches make the border router gather
network information and schedule TSCH cells for all nodes [43, 53],
which requires an end-to-end communication for each cell schedul-
ing. These methods cannot timely adjust cell schedules to varying
topology and incur communication overhead, not applicable to

https://doi.org/10.1145/3302506.3310394
https://doi.org/10.1145/3302506.3310394

IPSN ’19, April 16–18, 2019, Montreal, Canada Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim

large-scale deployment or dynamic link environments. In the dis-
tributed approaches [3, 22, 34, 42], each node negotiates with its
neighbors to determine which cells to use for communicating with
each of them, incurring additional communication overhead dur-
ing the negotiation procedure. As a breakthrough, Orchestra [47],
an autonomous cell scheduling method considering RPL routing
topology, was recently proposed and shown to operate on real em-
bedded devices. However, we reveal that its node-based scheduling
method inefficiently utilizes the two-dimensional slotframe space
and incurs transmission contention, degrading performance under
heavy traffic load and/or high node density (Section 3).

Note that traffic demand for LLN has been much more increased
these days, such as large-scale deployments (e.g., CISCO’s Con-
nected Grid mesh with thousands of nodes [45]) and frequent data-
gathering IoT applications (e.g., machine or structure health moni-
toring with acceleration and vibration [13, 35]). Emerging machine
learning and artificial intelligence techniques expect to receive IoT
sensor data with more frequency (frequent sensing) and density
(dense node deployment) for meaningful analysis. In addition, RPL
forces a small number of nodes to deliver much heavier load than
others due to the load balancing problem [16, 17], increasing link
layer’s burden. Therefore, cell scheduling has to evolve further to
provide reliability, throughput, and low energy consumption together.

Approach. To address the issues, we introduce ALICE, a novel au-
tonomous link-based TSCH cell scheduling. In contrast to Orchestra
(node-based scheduling), ALICE allocates a TSCH cell not for each
node but for each directional link (i.e., a pair of nodes and traffic
direction). Specifically, ALICE (1) tightly interacts with the RPL
routing, (2) allows a node with more RPL neighbors (parent and chil-
dren) to have more unique TSCH cells, (3) prevents upstream and
downstream traffic from bothering each other, (4) utilizes multiple
channels simultaneously, and (5) incurs zero additional overhead
for cell scheduling. A novel design is provided to achieve these five
features together, which utilizes routing (link ID), time (slotframe
number) and traffic information (traffic direction) (Section 4).

We implement ALICE on Contiki and evaluate its performance
on IoT-LAB [8] (an open LLN testbed) with 68 embedded devices
(Section 5). The experimental results show that ALICE reliably de-
livers heavy traffic regardless of node density and routing topology
imbalance, without sacrificing energy consumption. Compared to
Orchestra, ALICE delivers 2 times more bidirectional traffic with
98.3% reliability, 70% lower end-to-end latency, 95% less RPL parent
changes, and 35% lower radio duty-cycle.

Contributions. The contributions of this work are fourfold.

• We investigate autonomous TSCH cell scheduling, focusing on
providing low latency and high reliability for bidirectional traffic
delivery regardless of node density and topology imbalance.
• We design ALICE comprising the three elements: (1) directional
link-based cell scheduling, (2) multi-channel utilization, and (3)
periodic cell schedule change.
• We implement ALICE onContiki and open the source code, which
includes the three features for correct ALICE operation: (1) in-
teraction between RPL and scheduling operation, (2) interaction
between RPL and link layer transmission, and (3) Tx cell sched-
uling after packet queueing.

(a) Node distribution with routing topology

(b) Cell scheduling when a slotframe has 36 cells

Figure 1: An example of TSCH operation in a 4-hop, 23-node
network where node A is the border router

• We show that ALICE outperforms Orchestra in all aspects: relia-
bility, throughput, latency, routing stability, and duty-cycle. The
performance gap becomes larger under heavy traffic load.

2 BACKGROUND
This work investigates the TSCH cell scheduling issue, when TSCH
operates under the RPL routing protocol, to provide high reliabil-
ity, high throughput, and low energy consumption together. This
section provides a background for understanding the rest of this
paper: TSCH and its scheduling issue, RPL, and LLN application
scenarios with heavy traffic.

2.1 TSCH (Link Layer)
TSCH combines time slotted access with channel hopping, stan-
dardized as part of IEEE 802.15.4e in 2012 [51]. In a TSCH network,
each synchronized node shares its time information by periodically
broadcasting Enhanced Beacon (EB). A new node first scans wire-
less channels and joins a TSCH network when receiving a valid EB
and synchronizing its time to that of the EB sender. Each TSCH
node has a time source node and re-synchronizes its time to that of
the time source node when receiving an EB from the time source.

Slotframe Architecture. Figure 1(b) illustrates TSCH scheduling
when routing topology is given by Figure 1(a). By using the time
synchronization, TSCH constructs a two-dimensional slotframe
comprising LSF timeslots (time domain) and LCH channel offsets
(frequency domain). LSF is called slotframe length; the same slot-
frame structure is repeated every LSF timeslots. A pair of a time
offset to (0 ≤ to < LSF) and a channel offset co (0 ≤ co < LCH),
i.e., (to , co), defines a cell. The slotframe in Figure 1(b) has LSF = 9
and LCH = 4, resulting in 36 cells. Each timeslot is long enough for
a node to send a packet and receive an ACK (i.e., 10∼15 ms).

Each node relates to and co to the physical time and frequency
channel, respectively, as follows: Each TSCH timeslot has its ID,
called Absolute Slot Number (ASN). ASN is set to zero when a
network starts, increased by one at the end of each timeslot, and

ALICE: Autonomous Link-based Cell Scheduling for TSCH IPSN ’19, April 16–18, 2019, Montreal, Canada

shared by all nodes through EB. Then time offset to of the ASN -th
timeslot is represented by using modulo operation, as

to =mod(ASN , LSF). (1)

A TSCH network has a Frequency Hopping Sequence (FHS) consist-
ing of IEEE 802.15.4 channels (usually 4 channels which are known
to have the least amount of wireless interference, i.e., LFHS = 4).
The FHS is shared by all nodes through EB. Then the relationship
between co and the actual frequency channel is expressed by

Channel = FHS(mod(ASN + co , LFHS)). (2)

This slotframe architecture enables to avoid wireless interference
and multipath fading by using multiple channels [12].

Cell Scheduling Issue. Each node’s behavior at each timeslot is
determined by a cell scheduling algorithm: what channel to use and
whether to sleep, transmit, or listen. The cell scheduling largely
impacts TSCH performance, both packet delivery and energy con-
sumption. Figure 1(b) shows a scheduling example where each cell
is empty or filled with node pairs. If a cell (to , co) is filled with a
node pair (A,B), the cell is scheduled for node A to send a packet
to node B. Each node wakes up only at the timeslot which has a
cell where it is scheduled to do something, and sleeps otherwise.

There are important design criteria for cell scheduling: (1) Ad-
jacent node pairs should be scheduled in different cells. Al-
though TSCH uses slotted CSMA/CA to avoid collision when multi-
ple transmissions are scheduled at one cell, a scheduling algorithm
should minimize this case. For example in Figure 1(b), cells (0, 3),
(3, 2), and (4, 0) are shared by multiple adjacent node pairs, re-
sulting in hidden node collision or CSMA/CA contention. Instead,
a scheduling algorithm needs to distribute these adjacent node
pairs by utilizing the five empty cells. (2) A node should not be
scheduled for multiple operations in the same timeslot. In
Figure 1(b), node G is scheduled to send at cell (7, 3) and also re-
ceive at cell (7, 2), only either of which can happen at once. In
addition, Node E is scheduled to send to nodes B, J , andK , all at cell
(6, 1), only one of which can happen at once. These cases do not
incur collision/contention but degrade both reliability and latency
performance. (3) A node should know its scheduling informa-
tion by itself, only using local information.Due to LLN node’s
resource constraint, any elegant mechanism which works well in
powerful networks, such as LTE and WiFi, can be failed in LLN if
it incurs significant control overhead.

2.2 RPL (Routing Layer)
RPL is the IPv6 routing protocol for LLN, standardized in 2012 [29].
RPL is designed to build bidirectional routes between a border router
(e.g., node A in Figure 1(a)) and thousands of resource-constrained
(possibly battery-powered) nodes, mainly for reliable upward traffic
delivery. To this end, RPL constructs a Destination-Oriented Di-
rected Acyclic Graph (DODAG) rooted at a border router, based on
a distance vector metric from the border router, called RANK; In a
DODAG, a node closer to the border router should have a smaller
RANK. Routing information including RANK is exchanged/updated
by broadcasting DODAG Information Object (DIO) messages. The
DIO broadcast period is managed by TrickleTimer to achieve both
fast route recovery and low control overhead.

Each node sets its upward route by selecting a preferred parent
node according to its Objective Function (OF). OF defines how
each node computes its own RANK within a DODAG and selects its
preferred parent among the neighbor nodes. Although the definition
of OF is decoupled from the main standard, the most commonly
used OF is Minimum Rank with Hysteresis Objective Function
(MRHOF) [43], which uses ETX to compute RANK by default.

After selecting the preferred parent, a node transmits a Desti-
nation Advertisement Object (DAO) message through the upward
route, which sets the downward route as the reverse of the upward
route (symmetric bidirectional route). When changing the preferred
parent due to link variation, a node sends a DAO to the new pre-
ferred parent to setup a new downward route and a No-path DAO to
the old preferred parent to remove the old downward route. Given
that a DAO transmission failure (after link-layer retransmissions)
can ruin a downward route, RPL provides an optional feature that
a parent node replies with a DAO-ACK when receiving a DAO to
ensure a bidirectional parent-child relationship. When the DAO-
ACK feature is enabled, a node waits for a DAO-ACK after sending
a DAO to its preferred parent and resends the DAO at the routing
layer when failing to receive a DAO-ACK for a certain timeout
period. If the node fails to receive a DAO-ACK after the maximum
number of DAO retransmissions, it changes the preferred parent
and repeat the procedure until receiving a DAO-ACK.

2.3 The Case of Heavy Traffic in LLN
Although traditional LLN applications (e.g., environment monitor-
ing) typically generate low-rate traffic, as LLN’s use cases have
been more investigated and diversified, a number of applications
require an LLN to provide high throughput.

Large-scale and/or Dense Deployment. Once an application re-
quires a large-scale and/or dense node deployment, nodes near the
border router should deliver heavy traffic even though each node
generates low-rate traffic. For example, CISCO’s Connected-Grid
Mesh for smart grid constructs a large-scale LLN with ∼5000 nodes
and ∼7 hops [45]. Electronic shelf label (ESL) system for smart mar-
ket needs to build an LLN with ultra-high node density since even
a small store typically has thousands of price tags [18]. In addition,
the ESL server delivers a visual information to an electronic price
tag for a price update [39], which requires heavy traffic delivery.

Frequent Data Reporting.Modern IoT applications require fre-
quent data reporting for meaningful data analytics (e.g., by using
deep learning). For example, machine health monitoring for smart
factory requires a vibration sensor attached on a machine to fre-
quently report its data [13]. The Heating, Ventilation, and Air Con-
ditioning (HVAC) system may include anemometer deployment to
diagnose problems in a building and collect air flow measurements
for improved HVAC control. An anemometer needs to send a con-
tiguous stream of data to maintain calibration (e.g., 1 Hz sampling
rate) [36]. In these applications, the number of serviceable nodes is
strictly bounded by LLN’s throughput performance.

3 PRELIMINARY STUDY: ORCHESTRA
To ground our study, we present a preliminary case study of Or-
chestra [34], the de facto cell scheduling method implemented on
Contiki. We briefly describe its scheduling mechanism and experi-
mentally analyze its limitations, which motivates our ALICE design.

IPSN ’19, April 16–18, 2019, Montreal, Canada Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim

(a) Unicast slotframe of the receiver-based (O-RB) scheduling

(b) Unicast slotframe of sender-based (O-SB) scheduling

Figure 2: An example of Orchestra cell scheduling with the 23-node topology in Figure 1(a) and LUC
SF = 24. Node-based sched-

uling makes multiple adjacent links share the same cell, resulting in contention/collision and/or latency problems.

3.1 Autonomous “Node”-based Scheduling
The key features of Orchestra are its autonomous operation and
tight interaction with RPL, which enable each node to schedule
TSCH cells considering routing topology, by itself, with zero addi-
tional overhead. Specifically, each node needs only its MAC address
(node ID), parent-child relationship (at the routing layer) for cell
scheduling. Orchestra provides three types of slotframes to deliver
various traffic in LLN: (1) EB slotframe, (2) broadcast slotframe,
and (3) unicast slotframe. To avoid overlapped schedules among
the three slotframe types, each slotframe type uses only one fixed
channel offset: co = 0 for the EB slotframe, co = 1 for the broadcast
slotframe, and co = 2 for the unicast slotframe, respectively.

The EB slotframe is for exchanging EBs. Each node schedules two
cells in an EB slotframe, one for transmitting its EB and the other
for receiving an EB from its time source. Each node sets its RPL
parent node as the time source. When LEBSF is the length of the EB
slotframe, nodek sends its EB in a fixed cell (to , co) = (tEB,Txo (k), 0),
where tEB,Txo (k) is a time offset for EB transmission of node k and
calculated by using node k’s ID, as

tEB,Txo (k) =mod(Hash(ID(k)), LEBSF). (3)

Note that node ID is hashed1 (i.e., randomized) to mitigate EB
collision. Based on Eq. (3), node k determines when to receive an
EB from its time source, tEB,Rxo (k), by hashing the time source’s ID;
tEB,Rxo (k) can be changed when the RPL parent node is changed.

The broadcast slotframe is for broadcasting control messages,
such as DIO, and transmitting any packet when a unicast cell is not
scheduled (as a failover). Orchestra activates only one fixed cell,
(to , co) = (0, 1), in a broadcast slotframe, where all nodes wake up to
support broadcasting. Since broadcast timeslots are scheduled more
frequently as the broadcast slotframe length, LBCSF , decreases, L

BC
SF

should be short enough to cope with control packet transmissions.
1Note that the choice for Hash(x) is an implementation choice. The modulo function
can also be used as Hash(x).

The unicast slotframe is for packet exchanges between dedicated
two nodes, which is the subtlest part of cell scheduling. To this end,
Orchestra provides two types of scheduling: receiver-based (O-RB)
and sender-based (O-SB). In O-RB, each node has only one fixed
cell in a unicast slotframe to receive packets from any node, e.g.,
(to , co) = (t

UC,Rx
o (k), 2) for node k . The time offset for node k’s

receipt of unicast packets, tUC,Rx
o (k), is determined similar to Eq.

(3), by hashing node ID as

tUC,Rx
o (k) =mod(Hash(ID(k)), LUC

SF) (4)

where LUC
SF is the unicast slotframe length. Node k’s parent and

children nodes extract tUC,Rx
o (k) from node k’s ID and use the cell

(to , co) = (t
UC,Rx
o (k), 2) when sending a packet to node k . Each

node’s sending cells can be changed as routing topology varies. In
contrast, in O-SB, each node has only one fixed cell in a unicast
slotframe to send packets to any node, e.g., (to , co) = (tUC,Tx

o (k), 2)
for node k . The time offset tUC,Tx

o (k) is determined as Eq. (4).
Node k’s parent and children nodes listen at the cell (to , co) =
(tUC,Tx
o (k), 2) in preparation for nodek’s packet transmission. Each

node’s receiving cells can be changed as routing topology varies.

Given that Orchestra mainly uses node ID, we call it node-based
scheduling. Due to the randomization of a hash function, each node
is likely to have its unique cell for reception (O-RB) or transmission
(O-SB) when LUC

SF is larger than the number of nodes N . When
a node is scheduled for multiple operations in a timeslot, if any,
the node chooses an operation with this order: EB, broadcast, and
unicast; to give higher priority for control packet exchanges.

3.2 Problems
We claim that node-based scheduling is inefficient. Figures 2(a) and
2(b) show scheduling examples of O-RB and O-SB, respectively,
when 23 nodes are distributed/connected as in Figure 1(a). Note
that the EB and broadcast slotframes, not shown in Figures 2(a) and
2(b), use channel offset 0 and 1 for active cells, respectively, never
colliding with the active cells in the unicast slotframe.

ALICE: Autonomous Link-based Cell Scheduling for TSCH IPSN ’19, April 16–18, 2019, Montreal, Canada

Figure 3: A snapshot of RPL routing topology on the IoT-
LAB testbed (Grenoble), with 68 M3 nodes using -17 dBm
transmission power.

The unicast slotframe in Figures 2(a) and 2(b) is long enough for
each node to have a unique cell, since LUC

SF = 24. However, both
O-RB and O-SB have problems due to node-based scheduling. In the
case of O-RB, a cell (tUC,Rx

o (k), 2) is scheduled for (All_Nodes,k).
If node k has Nk neighbors (parent and children nodes), Nk nodes
contend with each other to send packet to node k in one cell,
(tUC,Rx
o (k), 2), which causes hidden node collision or CSMA/CA

contention. The fact that node k has its unique receiving cell does
not mean that it can be free from contention/collision (e.g., the cells
(2, 2), (13, 2), (15, 2), (17, 2), (18, 2), and (20, 2) in Figure 2(a)). The
problem becomes more severe as a node has more incoming traffic,
more children nodes, or an overlapped schedule.

On the other hand, in the case of O-SB, a cell (tUC,Tx
o (k), 2)

is scheduled for (k,All_Nodes). This scheduling method does
not incur contention/collision, but may cause a latency or queue
overflow problem when a node has many packets to send, since it
can send only one packet per unicast slotframe: node k needs Nk
slotframes to send a packet to each neighbor. When downstream
traffic is heavy (e.g., ESL system), the border router, which transmits
all downward packets, significantly suffers from this problem. In
addition, each node has to wake up and listen to the medium at
each neighbor’s Tx cell in preparation for receiving any packet (e.g.,
node k wakes up Nk times per slotframe), which increases radio
duty-cycle due to longer idle listening period.

To verify the qualitative analysis, we evaluate O-RB and O-SB
(Contiki implementation) on the IoT-LAB public testbed inGrenoble,
France. We use 68 embedded devices (M3) with transmission power
of -17 dBm where one node acts as the border router, resulting
in a 6-hop LLN as shown in Figure 3. We use MRHOF for RPL
and 4 channels for TSCH (LFHS = LCH = 4). We generate heavy
bidirectional traffic, 2 pkts/min of upward traffic from each node
and 2 pkts/min downward traffic to each node. In total, the border
router is required to deliver 268 pkts/min. Figures 4(a) through 4(f)
show various performance metrics of O-RB and O-SB according to
the unicast slotframe length LUC

SF , when LEBSF = 397 and LBCSF = 19.

Trade-off about Slotframe Size. Figures 4(a) and 4(b) show that
both O-RB and O-SB have a trade-off about the slotframe length.
As LUC

SF increases, radio duty-cycle is improved but packet delivery
ratio (PDR) is significantly degraded (∼40% when LUC

SF = 31). This
is because Orchestra utilizes less cells for transmission/reception
as LUC

SF increases, losing more packets while reducing energy con-
sumption. Figures 4(c) and 4(d) show that both O-RB and O-SB
suffer more link loss and queue loss as LUC

SF increases, verifying

(a) PDR (b) Duty cycle

(c) Link loss rate (d) Queue overflow

(e) Parent change frequency (f) Routing Overhead

Figure 4: Various performance metrics of Orchestra RB (O-
RB) and SB (O-SB) according to unicast slotframe length un-
der bidirectional traffic.

that Orchestra experiences significant contention/collision/delay
problems with a large unicast slotframe size due to lack of trans-
mission/reception opportunities.

Note that Orchestra’s unicast slotframe size needs to be larger
than the number of nodes to allocate a unique cell for each node (an
Rx cell in O-RB, a Tx cell in O-SB). It is a reasonable assumption that
the unicast slotframe size of 68 may be the optimum. When LUC

SF >

68, Orchestra maywaste many cells without transmission/reception.
When LUC

SF < 68, Orchestra cannot preserve a unique cell for each
node. However, Figure 4(a) shows that the PDR performance of
O-RB and O-SB starts to be degraded when the unicast slotframe
size becomes larger than 7 and 11, respectively, both of which are
much smaller than 68. This shows that in Orchestra under heavy
traffic, the loss of utilizing less cells is more significant than the
gain of providing a unique cell for each node. Therefore for reliable
delivery of heavy traffic with stable routing, Orchestra needs to use
a small unicast slotframe size, which sacrifices energy consumption.

Interaction between RPL and TSCH. Figures 4(e) and 4(f) show
that the routing layer is significantly affected by the performance
degradation at the link layer.When LUC

SF is large, RPL tries to change
the preferred parent more frequently to avoid link loss, which is
helpless since the link loss comes from contention/collision rather
than bad link quality. Therefore RPL’s effort ends up with noth-
ing but churning topology and increasing control overhead (e.g.,
DIO, DAO, and DAO-ACK). Furthermore, RPL has a load balancing

IPSN ’19, April 16–18, 2019, Montreal, Canada Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim

(a) ALICE schedule example at a unicast slotframe

(b) ALICE schedule example at the next unicast slotframe (reflecting time varying cell scheduling)

Figure 5: An example of ALICE scheduling with the 23-node topology in Figure 1(a) and LUC
SF = 24. Its multi-channel utilization

and directional link-based scheduling minimize contention/collision without sacrificing latency. In addition, time varying
scheduling prevents specific links from suffering persistent contention/collision.

problem [17]. Figure 3 verifies that RPL provides a significantly
unbalanced routing topology where one red node (node A) has to
deliver traffic from/to 44 nodes (66% of total traffic). This topology
imbalance intensifies contention/collision at the link layer; TSCH
scheduling must be improved to deliver heavy traffic.

Comparison between O-RB and O-SB. While having similar
behavior as described above, O-RB and O-SB operate differently in
details. Figures 4(c) and 4(d) show that O-RB incurs more link loss
while O-SB incurs more queue loss. This matches our qualitative
analysis: O-RB causes multiple senders contend in a same cell,
which results in link loss due to contention/collision. On the other
hand, O-SB provides only one transmission opportunity for each
node per slotframe, which increases latency and queue loss.

Figures 4(a) and 4(b) show that when using the same LUC
SF , O-SB

provides higher PDR with more radio duty cycle due to more idle
listening. If we allow O-RB and O-SB to use different unicast slot-
frame sizes and target high PDR (>99%), O-RB should use LUC

SF = 7
while O-SB should use LUC

SF = 11. If we compare the two cases, O-
RB and O-SB provide comparable PDR and duty-cycle performance.
However, O-SB provides more stable routing topology, with less
parent switches and routing packets. This is because, as shown in
Figure 4(c), O-SB has less link loss, which mitigates RPL’s misun-
derstanding of link quality. This demonstrates that if a scheduling
method has a trade-off between link loss and queue loss, it should
first resolve the link loss for a better interaction with RPL.

On the other hand, is it possible to escape from this trade-off:
link loss (contention/collision) vs. queue loss (latency)?2 We claim
that it is possible if we change the scheduling paradigm, from node-
based scheduling to link-based scheduling. This is what ALICE is
about, which is described in the next section.

2We claim that this trade-off is a fundamental limitation of Orchestra. To verify
this, we also evaluated a multi-channel version of Orchestra, which does not show
meaningful performance improvement (figures are omitted for brevity). This is because
the performance degradation of Orchestra comes from its inefficient use of existing
resource, not from lack of resource.

4 ALICE: AUTONOMOUS DIRECTIONAL
“LINK”-BASED CELL SCHEDULING

Our preliminary study showed that Orchestra has performance
issues even when providing a unique cell for a node, since multiple
adjacent links are scheduled in the same cell. To resolve the problem,
our intuition is that a unique cell should be allocated for each di-
rectional link. This section presents the design and implementation
aspects of our proposed scheduling method, called ALICE.

4.1 Overview
ALICE follows the basic architecture of Orchestra: (1) the same types
of slotframes (EB, broadcast, and unicast) with the same scheduling
priority, (2) autonomous scheduling, and (3) interaction with layer
3. However, ALICE schedules cells in the unicast slotframe differently,
(1) using directional link rather than node ID, (2) utilizing multiple
channel offsets, and (3) changing cell allocation at every slotframe.

These changes can be made very easily. Specifically, assum-
ing that node k is scheduled to send a packet to node l in a cell
(to , co) = (t

UC
o (k, l), cUC

o (k, l)), the time offset tUC
o (k, l) and the

channel offset cUC
o (k, l) for unicast communication over the direc-

tional link (k, l) are calculated, respectively, as

tUC
o (k, l) =mod(Hash(αID(k) + ID(l)), LUC

SF) (5)

cUC
o (k, l) =mod(Hash(α ID(k) + ID(l)), LCH − 1) + 1. (6)

Here the coefficient α is used to differentiate traffic directions,3 e.g.,
link (k, l) vs. link (l ,k). As in Eq. (6), when LCH = 4, ALICE utilizes
channel offsets 1, 2, and 3 for the unicast slotframe.

ALICE does not require any additional information for cell sched-
uling compared to Orchestra, enabling a node to autonomously al-
locate a unique cell for each directional link including the node. In
addition, each node’s Tx and Rx cells are changed as routing topol-
ogy varies. When N nodes are connected through RPL (DODAG
topology), the number of directional links is 2N − 2. Given that
3We use α = 256 (maximum value of node ID, the last byte of MAC address).

ALICE: Autonomous Link-based Cell Scheduling for TSCH IPSN ’19, April 16–18, 2019, Montreal, Canada

ALICE utilizes three channel offsets, it can allocate a unique cell
for each directional link when the unicast slotframe size is larger
than (2N − 2)/3. Then, each node sends a packet to (or receives a
packet from) any neighbor node in a unique cell.

Since a hash function can return the same value for different
links, ALICE may allocate one cell for multiple links. To resolve
the issue, ALICE changes cell schedules every unicast slotframe,
which prevents specific links from being overlapped forever. To
this end, we define Absolute SlotFrame Number (ASFN) asASFN =
⌊ASN /LUC

SF ⌋ where ⌊x⌋ is the floor function. Then the time and
channel offsets for the directional link (k, l) in theASFN -th unicast
slotframe can be calculated as

tUC
o (k, l ,ASFN) (7)
=mod(Hash(αID(k) + ID(l) +ASFN), LUC

SF)

cUC
o (k, l ,ASFN) (8)
=mod(Hash(α ID(k) + ID(l) +ASFN), LCH − 1) + 1.

Figure 5 shows an example of ALICE scheduling when 23 nodes
are distributed/connected as in Figure 1(a). Figure 5(a) shows that
ALICE utilizes multiple channels and allocates a unique cell for
each directional link. This almost nullifies the contention, collision,
and latency problems. As exceptional cases, (K ,R) and (K ,E) are
scheduled at the same timeslot (different cells), and (A,C) and (G,C)
are scheduled even at the same cell. Although these exceptions can
occasionally happen, the problem is likely to be solved at the next
unicast slotframe due to the ASFN -based scheduling. For example,
Figure 5(b) shows the cell schedules at the next unicast slotframe,
where all the previously overlapped links are distributed.

4.2 Design and Implementation
We implement ALICE on Contiki 3.0 and open the code.4 While
changing the node-based scheduling to the link-based scheduling
is straightforward (i.e., some formula changes), careful implemen-
tation choices should be made for time varying scheduling.

Time Varying Scheduling. At each unicast sloftrame, ALICE
changes cell schedules completely. To this end, when a node fin-
ishes the operation at the last active cell (for either Tx or Rx) of
the ASFN -th unicast slotframe, it increases ASFN by one and re-
allocates cells by using Eqs. (7) and (8). To this end, we use a simple
32-bit integer mix function [55] for Hash(x). Modern embedded
hardware performs this computation fast enough (e.g., with an M3
node computing power, getting (to , co) of 1,000 links takes only 1
ms) to not affect the next timeslot operation.

Packet-CellMatching on the fly.Orchestra determines what cell
to use for a packet transmission, when inserting the packet into the
queue; each packet in the queue has a fixed Tx cell. When a node
wakes up at the cell (to , co)where it is scheduled to send something
to some node, the node checks if its packet queue has any packet
whose Tx cell is (to , co), and sends the packet (i.e., Tx cell-based
packet search). Note that Orchestra has a fixed relationship between
a packet’s MAC destination and its Tx cell.

In contrast, ALICE changes a Tx cell for the same MAC destina-
tion at each unicast slotframe. Since it is possible for a packet’s Tx

4https://github.com/skimskimskim/ALICE

cell to be changed while the packet is queued, setting each packet’s
Tx cell before queueing can ruin the forwarding procedure. To re-
solve the problem, we implement ALICE to set a packet’s Tx cell
on the fly. Specifically, a node inserts a packet in the queue without
setting its Tx cell. When node k wakes up at the cell (to , co) where
it is scheduled to send something to node l , node k checks if its
packet queue has any packet whose next hop (MAC destination) is
node l , and sends the packet (i.e., next hop-based packet search).

Early Packet Drop. Given that Orchestra fixes a packet Tx cell
before queueing it, a node tries to send a packet to its MAC desti-
nation at its determined Tx cell, even when the MAC destination
is no longer a neighbor. Sending a packet to a non-neighbor node
mostly fails even after link layer retransmissions, which only wastes
energy/time resource and increases contention/collision.

In contrast, when an ALICE node searches the packet queue
based on the MAC destination information at each Tx cell, the node
checks if each packet’s MAC destination is still its RPL neighbor.
When a packet’s destination is no longer a neighbor due to physical
link variation, the node drops the packet since it cannot schedule
a Tx cell for the packet (the packet may not be sent forever). This
packet drop procedure prevents a hopeless packet from occupying
the packet queue space for a long time.

Interaction with RPL. ALICE’s cell scheduling for a link (k, l)
operates well only when both nodes k and l know that they are
valid RPL neighbors. Given that a node selects the preferred parent
by itself, it always knows the parent information. On the other
hand, a node cannot know a new child information until it receives
a DAO from the child node. Therefore, when a node fails to transmit
a DAO to its parent, ALICE scheduling can fail.

To address the issue, we enable RPL’s DAO-ACK option. Specifi-
cally, when a node selects a new parent, it changes the preferred
parent to the new parent only when successfully sending a DAO
to the new parent and receiving a DAO-ACK from the new parent.
On the other hand, a node adds a new child node when receiving
a DAO and removes an old child node when receiving a no-path
DAO. During a parent change procedure, before setting a complete
new bidirectional parent-child relationship, the DAO, no-path DAO,
and DAO-NACK messages are scheduled to be sent through the
broadcast slotframe.

Putting it All Together. To implement the above features, we pro-
vide threemain components for ALICE: (1) ALICE_Operation_Manager,
(2) ALICE_Packet_Selector, and (3) ALICE_Next_Cell_Scheduler.

The ALICE_Operation_Manager contains ALICE’s main opera-
tion loop, as described in Algorithm 1. At the start of an active cell,
the manager figures out what operation is required for the current
cell: Tx and/or Rx. Note that it is possible that both Tx and Rx are
required for a single cell due to a schedule overlap. In this case, the
manager prefers Tx operation. If Tx is required, the manager exe-
cutes the ALICE_Packet_Selector to get a packet to send in the
current cell. If the ALICE_Packet_Selector returns a valid packet,
the manager sends the packet in the current cell. If the manager
gets no packet from the ALICE_Packet_Selector, it sleeps (Tx only
cell) or listens (both Tx/Rx cell) to the medium in the scheduled cell.
On the other hand, if only Rx is required, the manager listens to the
medium in the current cell. After finishing the required operation,

https://github.com/skimskimskim/ALICE

IPSN ’19, April 16–18, 2019, Montreal, Canada Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim

the manager executes the ALICE_Next_Cell_Scheduler to get the
next active cell and sleeps until then.

Algorithm 1: ALICE Operation Manager
1 (to , co) ← Initialize TSCH and set the current cell;
2 while (1) do
3 operation← get_operation((to , co));
4 if operation has TX then
5 packet← ALICE_packet_selector((to , co), ASFN);
6 if packet is not NULL then
7 transmit_packet(packet,channel(co , ASN));
8 else if operation has RX then
9 listen(channel(co , ASN));

10 else if operation has RX then
11 listen(channel(co , ASN));
12 Add/remove cells (whenever RPL topology is updated);
13 (to , co) ← ALICE_next_cell_scheduler(to , ASFN);
14 sleep_until((to , co));

Algorithm 2: ALICE Packet Selector
input :cell (to , co), ASFN
output :packet

1 for pkt in PacketQueue do
2 dest ← get_next_hop(pkt);
3 if dest is not in RPL_NEIGHBOR_LIST then
4 remove pkt from PacketQueue;
5 else
6 (t

pkt
o , c

pkt
o) ← ALICE_get_TX_cell(dest , ASFN);

7 if (tpkto , c
pkt
o) == (to , co) then

8 packet← pkt ;
9 terminate;

10 packet← NULL;

Algorithm 2 describes how the ALICE_Packet_Selector works.
The selector receives a cell information as an input and returns
one (or zero) packet to send in the cell. To this end, it searches all
packets in the packet queue. If a packet’s next hop node is not a RPL
neighbor, the selector removes the packet from the queue (‘Early
Packet Drop’). Otherwise, the selector looks into the current cell
scheduling status to check what cell is scheduled for sending to the
next hop node. If the found Tx cell is equal to the input cell, the
selector returns the packet (‘Packet-Cell Matching on the fly’). If
no packet’s Tx cell matches the input cell, it returns NULL.

Algorithm 3 describes the ALICE_Next_Cell_Scheduler’s op-
eration. The scheduler searches the active cell list and finds the
active cell scheduled for the nearest future in the current unicast
slotframe. If it fails to find a valid next cell, the current cell is the
last active cell in the current unicast slotframe. Then, the scheduler
reschedules cells for the next unicast slotframe by increasingASFN
by one (‘Time Varying Scheduling’).

5 EVALUATION
We evaluate the effectiveness of ALICE on the IoT-LAB [8] with
the same configuration as in Section 3.2. For comparison, we also
evaluate both O-RB and O-SB of Orchestra.

Algorithm 3: ALICE Next Cell Scheduler
input : time offset tcuro , ASFN
output :next cell (tnxto , cnxto)

1 (tnxto , cnxto) ← NULL ;
2 for cell (to , co) in Unicast_Slotframe_Cell_List do
3 if (tnxto , cnxto) == NULL and to > tcuro then
4 (tnxto , cnxto) ← (to , co);
5 else
6 if to > tcuro and to < tnxto then
7 (tnxto , cnxto) ← (to , co);
8 else if to == tnxto then
9 (tnxto , cnxto) ← get_higher_priority_cell((to , co),

(tnxto , cnxto));

10 if (tnxto , cnxto) == NULL then
11 ALICE_Unicast_SF_Scheduler(ASFN+1) ;
12 (tnxto , cnxto) ← ALICE_next_cell_scheduler(-1, ASFN);

5.1 Impact of Unicast Slotframe Size
Figures 6(a) through 6(f) show various performance metrics of O-
RB, O-SB, and ALICE according to the unicast slotframe size, when
delivering bidirectional traffic (2 pkts/min from each node and 2
pkts/min to each node).

Figures 6(a) and 6(b) show that the packet delivery performance
of O-RB and O-SB is significantly degraded as LUC

SF increases, con-
firming the results of Section 3.2. Specifically, as LUC

SF increases,
O-SB’s latency performance is degraded, much more severely than
the O-RB case, due to lack of transmission opportunity. On the
other hand, ALICE maintains good packet delivery performance
even when LUC

SF is large. Thus ALICE outperforms both O-RB and
O-SB in all LUC

SF values and the performance gain becomes more
significant as LUC

SF increases. For example, when LUC
SF = 43, ALICE

provides 2.5 times better PDR and 83-93% lower latency than O-RB
and O-SB. This verifies that directional link-based scheduling and
time varying scheduling mechanisms efficiently utilize the unicast
slotframe space, resolving the contention/collision issue of O-RB
and the latency issue of O-SB, simultaneously.

More importantly, Figure 6(c) shows that ALICE obtains the
above performance gain without sacrificing energy consumption.
When routing topology is stable, ALICE incurs more radio duty
cycle than O-RB and O-SB since ALICE utilizes more channels and
cells (e.g., when LUC

SF = 7). However, as LUC
SF increases, O-RB and

O-SB suffer significant link loss and queue loss, respectively, as
shown in Figures 6(d) and 6(e). The link loss coming from con-
tention/collision (O-RB) makes RPL misunderstands that physical
link quality is bad. The queue loss coming from latency (O-SB)
drops many routing packets at the queue. Therefore, both O-RB
and O-SB fail to provide stable routing topology with a large LUC

SF
value, which causes many parent changes (Figure 6(f)) and routing
packet overhead. This inefficient operation significantly increases
radio duty cycle of O-RB and O-SB, making ALICE provide duty
cycle performance comparable to O-RB and better than O-SB when
LUC
SF is large.

ALICE: Autonomous Link-based Cell Scheduling for TSCH IPSN ’19, April 16–18, 2019, Montreal, Canada

(a) PDR (b) Latency

(c) Duty cycle (d) Link loss rate

(e) Queue loss (f) Parent change frequency

Figure 6: Performance of Orchestra and ALICE according
to unicast slotframe length under bidirectional traffic (2
pkts/min from each node and 2 pkts/min to each node). AL-
ICE provides high PDR and routing stability even with large
slotframe size, significantly improving duty cycling.

When allowing each scheme to use different LUC
SF and targeting

the high PDR (>99%), the best unicast slotframe sizes for O-RB,
O-SB, and ALICE are 7, 11, and 23, respectively. When comparing
these three cases, ALICE provides comparable PDR to O-RB and
O-SB, while improving latency and duty cycle.

5.2 Impact of Traffic Load
Next, we investigate the impact of traffic load on each scheme’s
operation. Based on the results in Section 5.1, we use the unicast
slotframe size 7, 11, and 17 for O-RB, O-SB, and ALICE, respectively.
Figures 7(a) through 7(f) show various performance metrics when
traffic load varies from 1 pkts/min to 6 pkts/min.

Figure 7(a) shows that the PDR performance of both O-RB and
O-SB is rapidly degraded as traffic load increases, even though
their unicast slotframe sizes are small enough. On the other hand,
ALICE maintains high PDR with heavy traffic load, even with larger
unicast slotframe size compared to O-RB and O-SB. This is because
ALICE provides more transmission opportunities than O-SB and
less contention/collision than O-RB.

Figure 7(b) shows that ALICE provides slightly longer latency
than O-RB and O-SB under light traffic load due to a larger unicast
slotframe size. However, as LUC

SF increases, ALICE incurs better
latency performance than the others. Figure 7(c) shows that ALICE
maintains low ETX under heavy traffic load, while both O-RB and

(a) PDR (b) Latency

(c) ETX (d) Lost packet

(e) Parent change frequency (f) Duty cycle

Figure 7: Performance of Orchestra and ALICE according to
traffic load when O-RB, O-SB, and ALICE use slotframe size
7, 11, and 17, respectively.

O-SB incurs higher ETX. Figure 7(d) shows that ALICE significantly
reduces all types of packet loss compared to O-RB and O-SB. Specif-
ically, when the traffic load is very high, ALICE’s packet losses
are mostly at the queue instead of the link, which enables RPL to
provide stable topology (Figure 7(e)). Again, these results verify that
ALICE addresses all the contention, collision, and latency problems
efficiently. Lastly, Figure 7(f) shows that ALICE achieves better
packet delivery performance even with lower duty cycle than the
others; ALICE outperforms Orchestra in all aspects.

5.3 Impact of Node Density
Now we investigate the impact of node density. To this end, we
increase transmission power from -17 dBm to 3 dBm (shorter and
denser routing topology) and perform the same experiments as
in Section 5.2. Figure 8(a) through 8(f) show the results. When
comparing these results with those of Figures 7(a) through 7(f),
it clearly shown that the performance of Orchestra worsens with
high node density. In contrast, interestingly, the performance of AL-
ICE becomes even better. Therefore, the performance gap between
Orchestra and ALICE becomes more significant.

We revisit the scheduling methods to discuss the reason. O-RB
allocates only one Rx cell for each node in a unicast slotframe, where
it receives packets from all neighbors. With high node density (many
neighbors), O-RB suffers contention/collision even more. Similarly,
O-SB allocates only one Tx cell for each node, where it sends packets

IPSN ’19, April 16–18, 2019, Montreal, Canada Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim

(a) PDR (b) Latency

(c) ETX (d) Lost packet

(e) Parent change frequency (f) Duty cycle

Figure 8: Performance of Orchestra and ALICE according to
traffic load when O-RB, O-SB, and ALICE use slotframe size
7, 11, and 17, respectively. Transmission power is 3 dBm for
all the 68 nodes.

to all neighbors, intensifying the latency problem as a node has
more neighbor nodes. Our results show that O-RB suffers from high
node density more than O-SB, resulting in worse PDR performance
(Figure 8(a)) due to severe link loss (Figure 8(d)).

In contrast, ALICE provides one cell for each directional link,
regardless of node density. Thus, ALICE does not lose anything with
high node density but has the benefit of a shorter routing distance.
As shown in Figures 8(b) and 8(d), ALICE provides better latency
with significantly reduced queue loss when node density increases,
verifying that it takes advantage of shorter routing distance. Overall,
under a dense node deployment and a heavy traffic load (6 pkts/min),
compared to Orchestra, ALICE achieves 2 times more throughput
with 98.3% reliability, 70% lower latency, 95% less parent changes,
35% lower duty cycle.

5.4 Impact of Traffic Pattern
We have verified ALICE’s superiority over Orchestra through vari-
ous experiments. Going further, we now focus more on ALICE’s
intrinsic behavior and limitation. To this end, we evaluate ALICE
(LUC
SF = 17) in various bidirectional traffic patterns: while maintain-

ing the total traffic load, we change the ratio of upward traffic to
downward traffic (i.e., 1:9, 5:5, and 9:1). The results are plotted in
Figures 9(a) through 9(d).

Figure 9(a) shows that ALICE maintains high PDR regardless
of traffic patterns, verifying its robustness. However, it does show

(a) PDR (b) Latency

(c) Link loss rate (d) Parent change frequency

Figure 9: Performance of ALICE according to traffic pattern,
when LUC

SF = 17. We include two different combinations of
traffic load and node density.

somewhat performance degradation as upward traffic becomes dom-
inant, longer latency (Figure 9(b)), more link losses (Figure 9(c)), and
more parent changes (Figure 9(d)). This is because ALICE allocates
only one cell for every directional link. Although this approach
is better than Orchestra, it still has a weakness when a specific
link has to deliver much more traffic than other links. For exam-
ple, when delivering upward packets, a node receives packets from
many children nodes (multiple links) and sends all the packets to
its parent node (one link); While a node receives multiple upward
packets in a unicast slotframe, it can send only one packet to the
parent in a unicast slotframe. Our results show that ALICE may
need to use a smaller unicast slotframe to support upward-focused
traffic than downward-focused traffic.

We believe that the further way to go is to dynamically allocate
more cells for a link delivering more traffic without breaking the
autonomous scheduling nature: autonomous scheduling based on
both directional link and traffic load.

6 RELATEDWORK
Due to a strong requirement of “simple operation”, initial link layer
protocols in multihop LLN are mostly asynchronous and use a fixed
single channel [27][52]. However, using a single channel provides
limited reliability on the 2.4 GHz ISM band, which is notoriously
lossy due to multipath fading and interference [1, 10, 11, 21, 26, 30,
33]. To alleviate the problem, some groundwork was done, which
reveals the potential of time synchronization and channel hopping.
Pister and Doherty designed TSMP which synchronizes nodes in a
multihop LLN within a few hundred microseconds [49]. Watteyne
et al. experimentally evaluated frequency channel hopping with
CTP, defacto multihop collection protocol, showing that channel
hopping provides more robust multihop connectivity than using a
single channel [40]. After TSCH [51] was standardized as part of
IEEE 802.15.4e in 2012 [50], a number of studies have investigated
this protocol. Some of them focus on TSCH cell scheduling which
can be classified into three categories: (1) centralized, (2) distributed,
and (3) autonomous approaches.

ALICE: Autonomous Link-based Cell Scheduling for TSCH IPSN ’19, April 16–18, 2019, Montreal, Canada

Centralized Cell Scheduling. Centralized methods make a root
node gather the network information from all nodes and perform
cell scheduling for each node. TASA [23] provides a centralized cell
scheduling which reduces latency and radio duty-cycle based on
global tree topology and each node’s traffic load information. With
the same information, MODESA [37] focuses on load balancing
among frequency channels. Although these approaches provide
theoretically optimal scheduling, in practice, they suffer significant
control overhead to update network information for the root node
and slow schedule adjustment when topology is changed. For this
reason, centralized scheduling methods are more suitable for a
static environment where routing topology rarely changes [32].

Distributed Cell Scheduling. Distributed methods try to allocate
cells through a handshaking procedure among neighbors. DeTAS
[25] is the distributed version of TASA, where a parent node gathers
all children nodes’ upstream traffic load and schedules when/where
it receives packets from each child node. However, in DeTAS, the
root should first gather the entire upstream traffic information and
allocate cells for its one-hop children nodes. Then the one-hop chil-
dren nodes perform cell scheduling for their children nodes. This
top-down scheduling propagation cannot quickly adjust to link dy-
namics. Wave [31] tried to minimize uplink delay in a decentralized
scheduling method, which also incurs the top-down scheduling
propagation. In MPLS [7], nodes exchange path and reservation
messages for proper bandwidth reservation. To calculate required
bandwidth, each node should have knowledge on its subtree and 2.5
layer service (multiprotocol label switching) is used for distributed
slotframe scheduling, inevitably causing traffic overhead. D-MSR
[56] makes each node use a handshaking mechanism to allocate
common unused cells for communicating with a new TSCH neigh-
bor. Another mechanism [24] proposed a negotiation protocol to
provide on-the-fly bandwidth reservation for slotframe scheduling.

Autonomous Cell Scheduling. Orchestra [34] is the first au-
tonomous TSCH cell scheduling method, which is proven to operate
on resource-constrained nodes. It enables each node to schedule its
own cells by using RPL neighbor information without any traffic
overhead. After the advent of Orchestra, several autonomous TSCH
cell scheduling mechanisms have been proposed.

Escalator [48] tried to reduce latency for upstream traffic delivery.
To this end, each node schedules not only its own cells but also the
cells for all of its subtree nodes. The scheduling aims to provide
this property: if a node sends an upward packet to its parent node
in a cell, the parent node should be able to send the packet in the
right next cell (the packet goes upwards as an escalator). However,
it only focuses on upward traffic not allocating any unicast cell for
downward traffic. Moreover, a node suffers more for idle listening
overhead as its subtree grows and the method has not yet been
evaluated on a large testbed. e-TSCH-Orch [38] also tried to reduce
latency of Orchestra focusing on collection (upstream) scenario.
Based on Orchestra schedule, when a node sends a packet to a
neighbor node, it indicates the number of packets in its transmission
queue on the packet footer. Its neighbor node schedules that amount
of consecutive Rx cells and the sender cleans its transmission queue
quickly. However, this simple strategy ruins Orchestra’s original
schedule, worsening the contention and collision problems, and
has not yet been evaluated on a large testbed. We emphasize that

using a proper evaluation methodology is necessary, particularly in
this LLN regime, to incorporate environmental challenges [9, 15].

Differently from the previous works focusing on the unicast
transmission, Vallati et al. modified the broadcast slotframe of Or-
chestra [54]. The authors focused on RPL’s unique behavior: a
lot of control packets are generated during the network initializa-
tion period or the topology change period, but control packets are
moderately generated during the rest of the time. Based on the
observation, the authors dynamically schedule multiple cells in the
given broadcast slotframe size, providing more broadcast cells only
when many control packets should be delivered. This strategy re-
duces radio duty cycling without sacrificing routing stability. This
approach and ALICE are complementary to each other: the former
handles the broadcast slotframe and the latter handles the unicast
slotframe. Combining these two methods can be a future work.

Novelty of ALICE. The TSCH scheduling research has shifted
from centralized to distributed and autonomous methods. Orchestra
is groundbreaking as the first autonomous scheduling method con-
sidering routing information. After Orchestra, some autonomous
scheduling techniques have been proposed, none of which escape
from the Orchestra’s node-ID hashing-based scheduling scheme.

However, recall that a transmission does not happen on a node
but a directional link, a pair of sender and receiver nodes. What
then is the right thing for a TSCH cell scheduler to do, as a link
layer protocol? It must be able to handle each directional link inde-
pendently. Focusing on this fundamental principle, ALICE uses di-
rectional link, rather than node, as the identifier for autonomous
cell scheduling. In addition, ALICE adopts a time-varying sched-
uling technique, which resolves cell collision among multiple di-
rectional links, a representative problem of autonomous scheduling.
These design choices are realized by our careful implementation
of tight interaction between layer 2 and layer 3. As a result,
ALICE outperforms Orchestra without violating the nature of
autonomous scheduling.

To the best of our knowledge, ALICE is the first autonomous
cell scheduling which performs better than Orchestra in all
aspects: reliability, throughput, latency, routing stability, and en-
ergy consumption. In contrast, Escalator and e-TSCH-Orch, even in
their own ideal simulation scenarios, do sacrifice energy consump-
tion to improve latency performance.

Looking forward, we believe that ALICE paves the “right” way
for more advanced cell scheduling techniques in that it provides
a fundamental structure for directional link-based autonomous
scheduling (i.e., handling each directional link separately). Building
on this structure, adaptive scheduling techniques considering vari-
ous information, such as real-time traffic demand, can be developed.

7 CONCLUSION
In this paper, we have systematically investigated the autonomous
cell scheduling problem in TSCH. Our preliminary study of Orches-
tra revealed the limitations of node-based autonomous scheduling,
such as contention, collision, and latency, which waste resource and
result in a significant performance degradation under heavy traffic
load. We designed and implemented ALICE, a novel directional
link-based autonomous scheduling method. On the open IoT-LAB
testbed with 68 nodes, the effectiveness of ALICE was extensively
evaluated and compared with Orchestra. Our results verify that

IPSN ’19, April 16–18, 2019, Montreal, Canada Seohyang Kim, Hyung-Sin Kim, and Chongkwon Kim

ALICE outperforms Orchestra in all aspects: reliability, throughput,
latency, routing stability, and energy consumption. The advantage
of using ALICE becomes more significant when traffic load is heavy.
Our study proves that ALICE has the potential to support a vari-
ety of applications, including not only traditional sensor network
applications generating low-rate traffic but also emerging heavy
traffic, streaming applications. In addition, ALICE provides robust
performance with unbalanced routing topology, regardless of node
density, which can support various deployment scenarios. Overall,
with its open implementation, ALICE can serve as a new de facto
cell scheduling method for TSCH.

ACKNOWLEDGMENTS
This work was supported by IITP MSIT (No.2015-0-00557), MSIP
ITRC (IITP-2018-2015-0-00378), NRFMSIP (No.2016R1A5A1012966),
Institute for Industrial Systems Innovation of Seoul National Uni-
versity, and the Dept. of Energy Grant No. DE-EE0007685, Califor-
nia Energy Commission, Intel Corporation. We are thankful to the
anonymous reviewers and the shepherd for their valuable feedback.

REFERENCES
[1] G. Anastasi, M. Conti, and M. Di Francesco. 2011. A comprehensive analysis of

the MAC unreliability problem in IEEE 802.15.4 wireless sensor networks. IEEE
Trans. Indus. Inf. 7, 1 (2011), 52–65.

[2] ANSI/ISA. 2011. ANSI/ISA-100.11a-2011 Wireless systems for industrial automa-
tion: Process control and related applications. ISA (2011).

[3] E. Buckland, M. Ranken, M. Arnott, and P. Owen. August 5, 2016. IoT Global
Forecast & Analysis 2015-25, Strategy Report. Machina Research (August 5, 2016).

[4] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In IEEE LCN. 455–462.

[5] Atis Elsts et al. 2016. Microsecond-Accuracy Time Synchronization Using the
IEEE 802.15. 4 TSCH Protocol. In IEEE LCN Workshops. 156–164.

[6] Alan Mainwaring et al. 2002. Wireless sensor networks for habitat monitoring. In
International workshop on Wireless sensor networks and applications. ACM, 88–97.

[7] A. Morell et al. May 2013. Label switching over IEEE 802.15.4e networks, Trans-
actions on Emerging Telecommunications Technologies. In Trans. on Emerging
Telecommunications Technologies, Vol. 24. 458–475.

[8] C. Adjih et al. 2015. FIT IoT-LAB: A large scale open experimental IoT testbed.
IEEE World Forum on Internet of Things (WF-IoT) (2015).

[9] C. A. Boano et al. 2018. IoTBench: Towards a Benchmark for Low-powerWireless
Networking. In CPSBench 2018.

[10] C. Kishore Singh et al. 2008. Performance evaluation of an IEEE 802.15.4 sensor
network with a Star Topology. ACM Wireless Networks 14, 4 (2008), 543–568.

[11] D. De Guglielmo et al. 2016. Accurate and efficient modeling of 802.15.4 unslotted
CSMA-CA through event chains computation. IEEE Trans. Mobile Comput. (2016).

[12] D.D. Guglielmo et al. 2016. IEEE 802.15.4e: a Survey. In Computer Communications,
Vol. 88. 1–24.

[13] Deokwoo Jung et al. 2017. Vibration Analysis for IoT Enabled Predictive Mainte-
nance. In IEEE ICDE. 1271–1282.

[14] David Stanislowski et al. 2014. Adaptive synchronization in IEEE802. 15.4 e
networks. IEEE Trans. on Industrial Informatics 10, 1 (2014), 795–802.

[15] H.-S. Kim et al. 2017. Challenging the IPv6 routing protocol for low-power
and lossy networks (RPL): A survey. IEEE Commun. Surv. Tutor 19, 4 (2017),
2502–2525.

[16] Hyung-Sin Kim et al. 2017. Do not lose bandwidth: Adaptive transmission power
and multihop topology control. In IEEE DCOSS. 99–108.

[17] H.-S. Kim et al. 2017. Load balancing under heavy traffic in RPL routing protocol
for low power and lossy networks. IEEE Transactions on Mobile Computing 16, 4
(2017), 964–979.

[18] H.-S. Kim et al. 2017. Smarter markets for smarter life: applications, challenges,
and deployment experiences. IEEE Communications Magazine 55, 5 (2017), 34–41.

[19] Hyung-Sin Kim et al. 2018. System architecture directions for post-soc/32-bit
networked sensors. In ACM SenSys. 264–277.

[20] JeongGil Ko et al. 2010. MEDiSN: Medical emergency detection in sensor net-
works. ACM Trans. on Embedded Computing Systems (TECS) 10, 1 (2010), 11.

[21] K. Yedavalli et al. 2008. Enhancement of the IEEE 802.15.4 MAC protocol for
scalable data collection in dense sensor networks. Proceedings of WiOPT (2008).

[22] M. Mohammad et al. 2016. Oppcast: Exploiting Spatial and Channel Diversity
for Robust Data Collection in Urban Environments. IPSN (2016).

[23] Maria Rita Palattella et al. 2012. Traffic Aware Scheduling Algorithm for reliable
low-power multi-hop IEEE 802.15. 4e networks. (2012).

[24] M. R. Palattella et al. 2016. On-the-fly bandwidth reservation for 6tisch wireless
industrial networks. IEEE Sensors 16, 2 (2016), 555–560.

[25] Nicola Accettura et al. 2013. DeTAS: A decentralized traffic aware scheduling
technique enabling IoT-compliant multi-hop low-power and lossy networks.
Second IEEE WoWMoM Workshop on IoT-SoS, 337–350.

[26] P. Di Marco et al. 2014. Modeling IEEE 802.15.4 networks over fading channels.
IEEE Trans. on Wireless Communication 13, 10 (2014), 5366–5381.

[27] P. Joseph et al. 2004. Versatile low power media access for wireless sensor
networks. In ACM SenSys. 95–107.

[28] Pangun Park et al. 2011. Breath: An adaptive protocol for industrial control
applications using wireless sensor networks. IEEE Trans. on Mobile Computing
10, 6 (2011), 821–838.

[29] P. Thubert et al. March 2012. RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. IETF, RFC 6550 (March 2012).

[30] R. Daidone et al. 2014. On evaluating the performance impact of the IEEE 802.15.4
security sub-layer. Computer Communications 47 (2014), 65–76.

[31] Ridha Soua et al. 2015. Wave: a distributed scheduling algorithm for con- vergecast
in IEEE 802.15.4e TSCH networks. Trans. on Emerging Telecommunications
Technologies 27, 4 (2015), 557–575.

[32] R. Tavakoli et al. 2018. Topology Management and TSCH Scheduling for Low-
Latency Convergecast in In-Vehicle WSNs. IEEE Trans. Ind. Informatics (2018).

[33] S. Brienza et al. 2013. Strategies for optimal MAC parameter setting in IEEE
802.15.4 wireless sensor networks: A performance comparison. IEEE ISCC (2013).

[34] Simon Duquennoy et al. 2015. Orchestra: Robust mesh networks through au-
tonomously scheduled TSCH. ACM SenSys (2015).

[35] S. Kim et al. 2007. Health Monitoring of Civil Infrastructures using Wireless
Sensor Networks. In IPSN. ACM, 254–263.

[36] Sam Kumar et al. 2018. TCPlp: System Design and Analysis of Full-Scale TCP in
Low-Power Networks. arXiv preprint arXiv:1811.02721 (2018).

[37] Soua Ridha et al. 2012. MODESA: an optimized multichannel slot assignment for
raw data convergecast in wireless sensor networks. IEEE IPCCC (2012).

[38] S. Rekik et al. 2018. Autonomous and traffic-aware scheduling for TSCH networks.
In Computer Networks, Vol. 135. 201–211.

[39] Taewon Suh et al. 2018. Electronic Shelf Lables: Prototype Development and
Validation Using A Design Science Approach. Journal of Information Technology
Management 29, 4 (2018), 23.

[40] T. Watteyne et al. 2009. Reliability through frequency diversity: why channel
hopping makes sense. In the 6th ACM symposium on Performance evaluation of
wireless ad hoc, sensor, and ubiquitous networks. ACM, 116–123.

[41] Thomas Watteyne et al. 2012. OpenWSN: a standards-based low-power wireless
development environment. Trans. on Emerging Telecommunications Technologies
23, 5 (2012), 480–493.

[42] T. Watteyne et al. 2015. Using IEEE 802.15.4e Time-Slotted Channel Hopping
(TSCH) in the Internet of Things (IoT): Problem Statement. IETF RFC 7554 (2015).

[43] O. Gnawali and P. Levis. September 2012. The Minimum Rank with Hysteresis
Objective Function. IETF, RFC 6719 (September 2012).

[44] IEC. April 27, 2010. Industrial Communication Networks Wireless Communi-
cation Network and Communication Profiles WirelessHART. IEC 62591 Ed. 1.0
b:2010 (April 27, 2010).

[45] Cisco Systems Inc. Open. Connected Grid Networks for Smart Grid - Field Area
Network / CG-Mesh. http://www.cisco.com/web/strategy/energy/field_area_
network.html. (Open).

[46] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. 2007. IPv6 over Low Power
Wireless Personal Area Networks (6LowPAN). IETF, RFC 4944 (September 2007).

[47] R. Musaloiu-E and A. Tezis. 2008. Minimizing the effect of wifi interference in
802.15.4 wireless sensor networks. Intl. Journal of Sensor Networks (2008).

[48] S. Oh, D. Hwang, K. Kim, and K. Kim. April, 2018. Escalator: An Autonomous
Scheduling Scheme for Convergecast in TSCH. In Sensors, Vol. 18(4). MDPI, 1–25.

[49] K Pister and Lance Doherty. 2008. TSMP: Time synchronized mesh protocol.
IASTED Distributed Sensor Networks (2008), 391–398.

[50] IEEE Computer Society. 2006. IEEE standard for information technology, Part 15.4,
Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low-Rate Wireless Personal Area Networks (LRWPANs). IEEE (2006).

[51] IEEE Computer Society. 2012. IEEE standard for information technology,
802.15.4e, Part. 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC sublayer. IEEE Computer Society (2012).

[52] Y. Sun, Omer G., and D. B Johnson. 2008. RI-MAC: a receiver-initiated asyn-
chronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor
networks. In Conference on Embedded network sensor systems. ACM, 1–14.

[53] P. Thubert. March 2012. Objective Function Zero for the Routing Protocol for
Low-Power and Lossy Networks (RPL). IETF, RFC 6552 (March 2012).

[54] C. Vallati, S. Brienza amd G. Anastasi, and S. Das. April, 2018. Improving network
formation in 6TiSCH networks. In Trans. on Mobile Computing, Vol. 1. IEEE, 1–13.

[55] Thomas Wang. Open. 32-bit Integer Hash Function. https://gist.github.com/
badboy/6267743. (Open).

[56] P. Zand, A. Dilo, and P. Havinga. June 2013. D-MSR: A Distributed Network
Management Scheme for Real-TimeMonitoring and Process Control Applications
in Wireless Industrial Automation. Sensors (June 2013).

http://www.cisco.com/web/strategy/energy/field_area_network.html
http://www.cisco.com/web/strategy/energy/field_area_network.html
https://gist.github.com/badboy/6267743
https://gist.github.com/badboy/6267743

	Abstract
	1 Introduction
	2 Background
	2.1 TSCH (Link Layer)
	2.2 RPL (Routing Layer)
	2.3 The Case of Heavy Traffic in LLN

	3 Preliminary Study: Orchestra
	3.1 Autonomous ``Node''-based Scheduling
	3.2 Problems

	4 ALICE: Autonomous Directional ``Link''-based Cell Scheduling
	4.1 Overview
	4.2 Design and Implementation

	5 Evaluation
	5.1 Impact of Unicast Slotframe Size
	5.2 Impact of Traffic Load
	5.3 Impact of Node Density
	5.4 Impact of Traffic Pattern

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

