Context: The Missing Piece in the Machine Learning
Lifecycle

Rolando Garcia, Vikram Sreekanti, Neeraja Yadwadkar, Daniel Crankshaw,

Joseph E. Gonzalez, Joseph M. Hellerstein
UC Berkeley

{rogarcia, vikrams, neerajay, crankshaw, jegonzal, hellerstein}@berkeley.edu

ABSTRACT

Machine learning models have become ubiquitous in modern
applications. The ML Lifecycle describes a three-phase pro-
cess used by data scientists and data engineers to develop,
train, and serve models. Unfortunately, context around the
data, code, people, and systems involved in these pipelines is
not captured today. In this paper, we first discuss common
pitfalls that missing context creates. Some examples where
context is missing include tracking the relationships between
code and data and capturing experimental processes over
time. We then discuss techniques to address these challenges
and briefly mention future work around designing and im-
plementing systems in this space.

1. INTRODUCTION

Most modern applications—ranging from personal voice
assistants to manufacturing services—rely on machine learn-
ing in some form. These applications rely on machine learn-
ing models to render predictions in response to a query. The
development, training, and serving of machine learning mod-
els is the result of a process that we call the Machine Learn-
ing Lifecycle. This lifecycle has three phases (Figure 1):
pipeline development, training, and inference.

The pipeline development phase is an iterative process in
which data scientists transform and visualize data, explore
various model designs, and experiment with many features.
Note that the focus on model design often leads to the term
“model development.” However, the true product of pipeline
development is a reusable pipeline that describes how to con-
struct a model from a given dataset. This pipeline is then
executed on a much larger, near-real time dataset to gen-
erate a production-ready model, and these trained models
are in turn used to serve predictions for new inputs to the
application.

The ML Lifecycle is data-intensive and spans many indi-
viduals. Each stage is often managed by a different team,
with different incentives and different structures. The tran-
sitions between stages and teams are usually ad-hoc and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CMI 18 August 20, 2018, London, UK
© 2018 ACM.

unstructured. As a result, in serious machine learning de-
ployments today, no one person or system has an end-to-end
view of the ML Lifecycle. This is problematic for a variety of
reasons, including irreproducibility of experimental results,
complicated debugging, and a lack of accountability. We be-
lieve there is a key missing component required to capture
this view: the context that surrounds the ML Lifecycle.

Recent work highlights data context [5] as a critical as-
pect of any data-centric effort, including ML pipelines. That
work defines data context as “all the information surround-
ing the use of data in an organization.” It goes on to distin-
guish three key types of data context: application context,
behavioral context, and change over time (the “ABCs” of
context). The application context (A) captures semantic
and statistical models that explain how bits should be in-
terpreted. Behavioral context (B) extends the traditional
notion of data provenance to capture how both people and
software interact with data. Lastly, change over time (C)
captures how each of the other two types of data context
are evolving.

In the next section, we highlight common pitfalls that
arise from ignoring data context in the ML Lifecycle. We
then discuss approaches to contextualize the ML Lifecycle
and briefly mention future work.

2. THE ABSENCE OF CONTEXT

In this section, we describe how code and data should be
interpreted, how they evolve over time, and what their rela-
tionship is to each other and the people that create and use
them. Our discussion also includes the history of an orga-
nization’s model management practices. We consider more
than just the success stories: we consider the context sur-
rounding the experiments that failed because of bugs, poor
performance, excessive cost, and so on. We strive to leverage
this context to learn from our mistakes and the mistakes of
others, to reduce work duplication, and to formalize machine
learning practices.

2.1 The Code and Data Ecosystem

Data is a first class citizen in any machine learning pipeline.
The same pipeline trained on different data can yield a dras-
tically different result. Unfortunately, most organizations
today do not capture the relationship between code and
data, both within and across the phases of the ML Life-
cycle. Most importantly, context around which data set
was used to train a particular version of a model is lost.
Other basic information—Ilike schemas, distributions, and
expectations—are even less available.

Pipeline Development Training Inference
@
Data EDA & ‘-.t Prediction Service
— Cleaning - Vis — — - -KD,.@.‘ ’ 4mmmm Query
- N <> Prediction msp
| | >y

-
— - ' l Training Pipelines
Training & Model t

offi Validation Design —
ine
o L r. Validation
ive . ¢

Data

Models End User

Application

FeedbackJ

Figure 1: The end-to-end machine learning lifecycle.

In the rest of this section, we describe a few common sce-
narios demonstrating the loss of context in the code and
data ecosystem.

This data looks wrong! The first step in the ML Life-
cycle often consists of transforming raw data into a cleaned
dataset. That dataset is often shared and reused. If a data
scientist or analyst who receives the data encounter issues,
they need access to the original data and transformation
scripts. If this context is not explicitly logged, the deriva-
tion of the cleaned dataset is opaque to the receiving user.
What’s worse is that they may be unaware that the data
they received was derived through a transformation process.
Missing Context: the code and data used to construct the
dataset.

If T could only find that model from last week!
Pipeline development is inherently experimental with many
iterations of trial and error. There are a variety of reasons
that we may want to return to earlier versions of our models
and data. For example, it is common to reach a dead-end in
model design only to return to an earlier model. Recreating
an earlier state requires reverting not only code but also
data, parameters, and configurations. Finding the earlier
best version may require searching through many alternative
versions. Missing Context: the versions of code, data,
parameters, and configurations over time.

It worked better yesterday! Models inevitably de-
grade in their predictive power. There are many reasons for
this degradation. For example, a shift in the data distribu-
tion can result in a rapid decline in predictive power. Di-
agnosing this decline requires comparing training data with
live data. Solving the problem may require retraining the
model, revisiting earlier design decisions, or even rearchi-
tecting the underlying model. Missing Context: the full
lineage of the model through each stage of the ML Lifecycle
as it existed at the time of training.

I fixed it, who needs to know? Models are routinely
composed in production. For example, modeling a users
likelihood to buy a product might depend on predictions
about the user’s political preference. Changes to upstream
model will impact the quality of predictions from a down-
stream model. Surprisingly, improving the accuracy of an
upstream model can in some cases degrade the accuracy of
downstream models because the downstream models were
trained to compensate for errors. Missing Context: the
eventual consumers of predictions from models.

2.2 Learning From Your Mistakes
An analyst’s first question when debugging might be to

ask if they are encountering a well-known problem. Answer-
ing this requires context in two scopes. First, it requires
context around past experiments for this pipeline—both suc-
cessful and unsuccessful. It could also potentially require
surrounding other, related projects in the organization. We
next look at two examples of this sort, one diagnosing a
problem and the other remediating a problem.

I’ve seen this problem before. Any organization will
develop a set of recurring problems in their ML Lifecycle.
Imagine a model for a ride-sharing service is predicting neg-
ative trip durations. A natural question might be to ask why
the training data would lead to this prediction and whether
there’s a standard data cleaning step that is missing. An ex-
pert on trip data might know that canceled trips are logged
as having -1 duration and that these trips should be dropped;
however, this information is not readily available without
experience. Missing context: Standard transformations
applied to a dataset.

I tried that already! Imagine a data scientist is tasked
with improving the performance of a certain predictor de-
veloped by a different team member. It is likely that the
same set of common model designs has already been consid-
ered. Knowing this information can help avoid redundant
work. Missing context: Past designs and their resulting
test scores.

2.3 Proper Methodology

The statistical nature of the ML Lifecycle requires exper-
imental discipline. To some degree, this discipline can be
captured and checked by recording the behavior of analysts
and the structure of the pipelines themselves. While no
single approach will solve all of the problems surrounding
statistical and methodological practices, context will play a
crucial role.

Have I used this test data before? When develop-
ing models, it’s important to separate training and testing
datasets. Overuse of testing data during training can lead to
poor generalization and performance. For example, tuning
a parameter by repeatedly testing on the same data can lead
to over-fitting. Missing context: Behavior of the analyst
and content & structure of the pipeline.

3. SYSTEM REQUIREMENTS FOR MODEL
LIFECYCLE MANAGEMENT

Software engineering systems exist for building complex
software projects, managing versions, automatically testing
and deploying built binaries, logging, monitoring, and so

on. More importantly, software engineering systems may
have close analogs for the ML Lifecycle, and could serve
as a sound starting point for research. However, there are
characteristics of the ML Lifecycle that are unique to model
management, and as a result, we do not expect to find strong
parallels from software engineering. The characteristics that
are special to the ML Lifecycle are the following: unlike the
software engineering lifecycle, the ML Lifecycle is empiri-
cal, combinatorial, and data driven. The ML Lifecycle is
empirical and combinatorial because even the most expe-
rienced and meticulous pipeline engineers will have only a
vague idea of the elements and structure of the final pipeline.
Context will play a central role in navigating the vast space
of possibilities: it will be necessary to understand which
data artifacts were used to train which models, and with
what configurations. The ML Lifecycle is also data-driven
because the model, the output of training, is inextricably
linked to the data it was trained on. Contrast this with
a software project, where the build or compilation of such
systems are data independent. Context will be indispens-
able for the data and sample management systems that are
used throughout the phases of the ML Lifecycle. Finally, as
[8] notes, the use of machine learning models in an appli-
cation often results in substantial technical costs stemming
from the failure of traditional abstractions and software de-
sign principles in the presence of machine learning. While
decades of research in software engineering has established
techniques and tools to manage the development and de-
ployment of complex software applications, there has been
very little research into managing the development and de-
ployment of machine learning applications.

3.1 Pipeline Development Tools

For pipeline development, we must build tools with which
we can easily change the elements and structure of pipelines
and feel confident in undoing unsuccessful attempts. Tools
that support and enable pipeline development are “compo-
sition tools” [7]. These tools must support hypothesis for-
mation, evaluation of alternatives, interpretation of inter-
mediary results, and dissemination of results. Experienced
pipeline engineers tasked with designing an ML pipeline of-
ten have a vague idea of the elements and structure of the
pipeline in advance, but the particular configuration and
final architecture must be discovered. For example, the
pipeline engineer may know to use a neural network rather
than a Naive Bayes Classifier, but the final number of lay-
ers and neurons per layer are unknown at the onset. To
the extent that pipeline development is a creative and em-
pirical endeavor, pipeline engineers must be encouraged to
explore the space of possible alternatives. Tools that encour-
age exploration must have “low viscosity”, meaning that they
should easily enable changes to all aspects of the pipeline [7];
additionally, these tools must have very good undo capabil-
ities, so the pipeline engineer feels comfortable trying new
things, and powerful yet efficient previewing mechanisms to
limit the consumption of scarce and valuable resources (such
as computing time, memory, and data) without impeding
exploration.

There are many possible roles for context in pipeline de-
velopment tools. As a more general form of meta-data, con-
text can help us interpret, and therefore compare the arti-
facts within pipelines and across their versions. Consider
how a version control system, such as Git, would benefit

from context. Git, which is tailored for source control and
the software engineering lifecycle, defines change semantics
as line-by-line differences. But these semantics are mean-
ingless for binary and data artifacts. To detect meaningful
change in data, we should look at metadata properties in-
cluding the schema, distributions across different attributes,
or topics in the data, instead of the exact contents of the
records. When comparing binary objects such as two dif-
ferent models, it will be much more useful to compare the
metadata of these models — e.g., their accuracy, recall, train-
ing hyper-parameter configurations, and so on — rather than
just diffing their binaries.

3.2 Training Systems

Frameworks such as TensorFlow manage many of the prob-
lems of distributed training at scale; namely, scheduling
computation to run on different devices, and managing the
communication between these devices [1]. However, data en-
gineers are still responsible for managing very large datasets
and their versions over time, provisioning resources, and con-
trolling for variability inherent in training in the cloud (at-
tributable to multi-tenancy, hardware, workload, and data
variability, and so on). In many cases, as deployed models
interact with the world they produce new data that can be
used to retrain existing models. In these cases, automated
systems will periodically re-train existing models in response
to changes in data or code. Unlike pipeline development,
training does not require any human design considerations,
and the search space is exhaustively enumerable in princi-
ple. However, data and model management requirements
increase substantially. Of special significance to training
will be techniques to automatically decide when to train,
leverage knowledge of multiple pipelines to improve training
performance, and study mechanisms to mitigate the risk of
over-fitting.

Now, we consider how training systems may leverage and
benefit from context. Context may benefit training in two
ways: mitigating the risk of over-fitting and surfacing oppor-
tunities for optimization. Context about the training data
and the processes that generated it, as well as context about
how and how often that data is used can help reduce the risk
of over-fitting to the data. As for optimization opportuni-
ties, organizations or cloud service providers will simultane-
ously run many training jobs often. In this case, it would
be extremely valuable if the pipeline training system could
characterize the pipelines that it is running and compare
them to find common or equivalent transformations or sub-
graphs. Today, this kind of context is not widely available to
the distributed systems that train models. This means that
the system cannot intelligently schedule similar pipelines to
run together, and re-use or share intermediate artifacts. The
failure to understand the resource needs (meta-data) of each
action in the pipeline can also lead to lost opportunities to
schedule the execution of dis-similar pipelines more opti-
mally. In summary, missed application context about the
pipelines results in re-computation and poor schedules.

3.3 Inference Systems

During inference, trained models are used to render pre-
dictions for new inputs. The primary systems challenge of
inference is delivering low latency, highly available predic-
tions under heavy and often bursty query load. However, an
often overlooked but critical component of inference is man-

aging model versions and tracking variation in queries and
prediction errors. Understanding, how models are perform-
ing production and debugging their failures depends criti-
cally on capturing their provenance.

Inference is the ML Lifecycle phase that already takes
the most advantage of context. Prediction serving systems
monitor the end-user application for feedback to measure
the quality of the predictions. Other ways in which context
could help inference is by leveraging context describing the
input and output interfaces of models, together with the
metadata about the training data and intended use for the
model. If this context is available, the prediction serving
system can more intelligently compose or combine models or
their predictions to improve robustness and decrease latency.

4. RELATED WORK

Data Context Services. Modern data analytics ecosys-
tems can benefit from a rich notion of data context, which
captures all the information surrounding the use of data in
organization. Data context includes traditional notions of
metadata combined with data provenance and version histo-
ries. Recent work has discussed systems, such as Ground [5]
and ProvDB [6], that enable users to capture richer data
context. As discussed earlier, our work here builds on data
context. However, this paper’s key contribution is a domain-
specific discussion of the benefits of data context in one do-
main. In other words, the ideas discussed here consistute an
“Aboveground” application discussed in [5].

Model Management & Serving. A variety of recent
work [4, 2, 3] has focused on the inference stage of the
end-to-end ML lifecycle shown in Figure 1. Data context
is essential for prediction serving systems that are funda-
mentally disconnected from the pipeline development and
training stages of the ML lifecycle. For instance, explaining
change in prediction accuracy is challenging without access
to full lineage of the models, training data, and any hy-
perparameters. Similarly, ModelDB [9] captures context in
the pipeline development phase but is disconnected from the
broader ML Lifecycle.

5. CONCLUSION

In this paper, we characterized the ML Lifecycle and pos-
tulated that the crucial missing piece within and across every
phase is context: “all the information surrounding the use
of data in an organization.” The transitions between stages
and teams are usually ad-hoc and unstructured, meaning no
single individual or system will have a global, end-to-end
view of the ML Lifecycle. This can lead to problems like
irreproducibility, over-fitting, and missed opportunities for
improved productivity, performance, and robustness.

Some of the scenarios that illustrate the problems of miss-
ing context include those where the code and data used to
clean data are lost, past versions are irretrievable, and de-
ployed models degrade in performance over time. We also
consider organizational context, often termed “tribal knowl-
edge”, that can be leveraged to reduce work duplication and
respond to common problems, and some of the behavioral
context that is generated during a pipeline engineer’s activ-
ities, and how this context can be used to characterize and
potentially help them improve their process.

The ML Lifecycle has some similarities with the soft-
ware engineering lifecycle, such as how engineers describe

pipelines for building a binary artifact, how there is a need
to maintain different versions over time, and so on. This
observation motivates our recommendation of drawing in-
spiration and guidance from software engineering when de-
signing the tools for ML Lifecycle. However, we also note
that the ML Lifecycle has some important differences from
software engineering: namely, the ML Lifecycle is empirical,
combinatorial, and data-driven. We also argue that context
will be the key component in supplementing existing tools
and creating future ones for the service of the ML Lifecycle.

Finally, we would like to end by noting that we are ac-
tively developing a system called Flor', a context-first tool
for managing the ML Lifecycle. Our initial focus has been on
tooling the pipeline development process, but we hope that
these techniques will be applicable in the broader scope of
the ML Lifecycle.

6. REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] D. Agarwal, B. Long, J. Traupman, D. Xin, and
L. Zhang. Laser: A scalable response prediction
platform for online advertising. In Proceedings of the
7th ACM International Conference on Web Search and
Data Mining, WSDM ’14, pages 173-182, New York,
NY, USA, 2014. ACM.

[3] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li,

Z. Zhang, M. J. Franklin, A. Ghodsi, and M. I. Jordan.
The missing piece in complex analytics: Low latency,
scalable model management and serving with velox. In
CIDR 2015, Seventh Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January
4-7, 2015, Online Proceedings, 2015.

[4] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 17), pages 613-627, Boston, MA, 2017. USENIX
Association.

[5] J. M. Hellerstein, V. Sreekanti, J. E. Gonzalez,

J. Dalton, A. Dey, S. Nag, K. Ramachandran, S. Arora,
A. Bhattacharyya, S. Das, et al. Ground: A data
context service. In CIDR, 2017.

[6] H. Miao, A. Chavan, and A. Deshpande. Provdb: A
system for lifecycle management of collaborative
analysis workflows. CoRR, abs/1610.04963, 2016.

[7] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman,
R. Pausch, T. Selker, and M. Eisenberg. Design
principles for tools to support creative thinking. 2005.

[8] D. Sculley, T. Phillips, D. Ebner, V. Chaudhary, and
M. Young. Machine learning: The high-interest credit
card of technical debt. 2014.

[9] M. Vartak, H. Subramanyam, W.-E. Lee,

S. Viswanathan, S. Husnoo, S. Madden, and

M. Zaharia. Modeldb: A system for machine learning
model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, HILDA ’16, pages
14:1-14:3, New York, NY, USA, 2016. ACM.

"https://github.com /ucbrise/flor

