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Abstract1

GPS-equipped smartphones provide new methods to collect data about travel behavior, including2
through travel survey apps that incorporate automated location sensing. However, prior approaches3
to this have involved proprietary or one-off tools that are inconsistent and difficult to evaluate.4
e-mission is an open-source, extensible software platform that consists of (i) an app for survey5
participants to install on their Android or iOS smartphones and (ii) cloud-hosted software for man-6
aging the collected data. e-mission collects continuous location data, user-initiated annotations,7
and responses to contextual, platform initiated survey questions.8

New studies can be set up using the existing U.C. Berkeley infrastructure with no addi-9
tional coding, or the platform can be extended for more complex projects. This paper reviews the10
requirements for smartphone travel data collection, describes the architecture and capabilities of11
the e-mission platform, and evaluates its performance in a pilot deployment. The results show that12
the platform is usable, with over 150 installations in a month; stable, with over 85% of users retain-13
ing it for more than 3 days; and extensible, with interface and survey customizations accomplished14
in a little over a week of work by a transportation engineering researcher. We hope that e-mission15
will be a useful tool for app-based data collection and will serve as a catalyst for related research.16
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INTRODUCTION1
The rapid adoption of GPS-equipped smartphones is transforming data collection for travel be-2
havior research and analysis. As of 2016, 77% of all U.S. adults, and 92% of adults under 30,3
own smartphones ((author?) (19)). Passive records of smartphones’ approximate locations are4
compiled by service providers (as well as by certain location-based app platforms), but purpose-5
built travel survey apps remain the best way to obtain detailed data. Travel survey apps allow6
researchers to collect high-precision GPS traces and pose contextual, on-device survey questions7
for data validation or to gather supplementary information. Technical challenges include a lack of8
standardization in smartphone sensing systems, shorter battery life than stand-alone GPS devices,9
and the complexity of building a comprehensive software platform.10

This paper introduces e-mission,1 an open-source platform for collecting prompted, user-11
reported, and automatically sensed travel data from smartphones. It consists of an app for survey12
participants to install on their Android or iOS smartphones and cloud-hosted software for man-13
aging the collected data. e-mission improves on existing tools by being entirely open, modular,14
and extensible. This provides two important benefits: (i) its algorithms for collecting sensor data,15
managing power drain, and processing GPS traces can be fully documented, benchmarked, and re-16
produced; and (ii) project-specific modifications to the software are easy to implement and re-use.17
This is consistent with the case for open computing programs for reproducible research outlined18
in (author?) (12). At the same time, e-mission already provides an extensive suite of functionality19
and can be quickly deployed for new studies that follow a standard template.20

Travel survey data collection21
Transportation planners and researchers use data from travel surveys to build predictive models22
of travel behavior and infrastructure needs. Typical surveys collect information about trip origins,23
destinations, purposes, timing, travel modes, routes, and other related information, using paper-,24
phone-based, or electronic tools. This human-based data collection may contain errors and biases,25
but is ideal for understanding people’s perception of their own travel ((author?) (25)).26

Technologies like GPS can reduce respondent burden while providing more precise, accu-27
rate, and complete records of survey participants’ travel. Travel surveys increasingly supplement28
self-reported information with automatically sensed location data from stand-alone GPS devices29
(e.g., (author?) (24), (author?) (17)). However, these devices have their own drawbacks, such as30
expense, that make them difficult to use at scale ((author?) (18)).31

e-mission is part of a new category of smartphone-based tools that combine the expres-32
siveness of surveys with the detail and precision of location sensing. Most smartphones now have33
GPS chipsets, as well as other sensors like accelerometers that can facilitate travel mode detection.34
Smartphone-based data collection can provide better data quality and better ease of use for survey35
participants, at lower overall cost than stand-alone GPS devices.36

User engagement37
Survey participants must be recruited to studies that use the e-mission platform in the same manner38
as a traditional survey, but the platform includes a number of features designed to reduce enroll-39
ment friction and keep participants engaged in the study. e-mission facilitates on-boarding through40
(i) direct installation of the app from standard app stores, (ii) optional study-specific interface cus-41

1https://e-mission.eecs.berkeley.edu; https://github.com/e-mission
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tomization, and (iii) a clean user experience.1
It also includes features to facilitate long-term user engagement through information provi-2

sion or gamification, for studies where this is appropriate. Personal travel analytics may appeal to3
users who are interested in physical activity or environmental sustainability, or just curious about4
their own mobility patterns. Gamification through personal targets or social competition can make5
these apps into tools for behavior modification (e.g., (author?) (13), (author?) (14)), and exper-6
iments in this area are the topic of active research (e.g. in (author?) (4)). These features can be7
disabled in cases where they could interfere with a study.8

Related work9
A 2014 TRB report ((author?) (25)) provides the most extensive review to date of approaches10
for collecting and analyzing GPS data to study travel behavior. They identify key challenges for11
smartphone data collection, including: (i) market fragmentation (different mobile operating sys-12
tems and hardware capabilities make it difficult to collect equivalent data from all survey partici-13
pants); (ii) power drainage (continuous collection of GPS data will rapidly drain a smartphone’s14
battery); (iii) costly data plans (cellular data transmission may not be feasible); and (iv) sampling15
biases (ownership of smartphones varies by age, income, and education).16

Many studies have used smartphones to collect travel data, typically falling into three cat-17
egories: (i) automatically generated travel diaries that avoid the errors and biases of self-reporting18
(e.g., (author?) (5), (author?) (20)); (ii) behavior modification based on gamifying travel and19
providing incentives for particular mode choices (e.g., (author?) (13), (author?) (14)); and (iii)20
understanding human perceptions by building route choice models for active transportation modes21
such as bicycling (e.g., (author?) (11), (author?) (2)).22

Technological advancement and increasing market penetration of smartphones are leading23
to steady progress on each of the four challenges identified in the TRB report. However, we iden-24
tify a fifth, related challenge: collection platform robustness. The complexities of cross-device25
data collection, power management, and data analysis are best addressed by open, modular, ex-26
tensible software platforms that encourage widespread adoption. Such platforms can be easily27
deployed for new projects and reliably benchmarked and adapted as technologies change. Impor-28
tantly, open-source software can improve reproducibility and provide an opportunity for scholars29
and practitioners to build a collaborative platform that is controlled by the community.30

The remainder of this paper is organized as follows. The next section describes the e-31
mission platform architecture and data collection capabilities. The subsequent section describes32
usage and extensibility, and the final sections evaluate pilot deployments, identify future work, and33
conclude.34

SYSTEM ARCHITECTURE AND COLLECTED DATA35
The core functionality of the e-mission platform is to collect and assemble travel data. In this36
section, we identify key data requirements and briefly describe the architecture of the software37
platform. Important categories of data are automatically sensed information, user-initiated reports,38
and platform-initiated requests such as survey questions. For further use, e-mission assembles the39
raw data into travel diary components, personalized tour models, and other meaningful outputs.40
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FIGURE 1: Supported data collection types. Left to right: automatically sensed, user initiated,
platform-initiated

Categories of human travel data1
We divide human travel data into three broad categories, based on the technical requirements and2
user experience of collecting it from a smartphone(Figure 1).3

1. Automatically sensed4
This represents data, such as location, accelerometer, or microphone readings, obtained automati-5
cally from smartphone sensors without any user intervention. Since this data is obtained automat-6
ically, it does not represent a cognitive burden on the user and can be collected in large quantities.7
However, a naive approach of reading data at high frequency from all possible sensors will lead to8
significant power drain, and represent its own burden on the user — their smartphone may become9
unusable during the course of the day. Therefore, the data collection processes need algorithms10
that can strike a balance between data quality and power drain.11

Further, this data is typically not useful in itself; inference algorithms need to be run on12
top of it to generate useful insights. Multiple inferences can be drawn from the same set of base13
data — for example, accelerometer data can be used for both road quality (e.g. in (author?) (9))14
and for travel mode detection (e.g. in (author?) (10)). However, such inferences are inherently15
inaccurate, so the inference algorithm needs to be able to quantify its uncertainty, and any action16
on the inference needs to take this into account.17

2. User-initiated18
This is data that the user is motivated to report based on his/her surroundings. It is typically19
perceptual and cannot be inferred by sensor data alone. Examples could be: “the sidewalk here20
feels empty,” “a truck has blocked the bike lane,” and so on. Open-ended perceptual data has not21
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FIGURE 2: Supported outputs. Left to right: travel diary, tour model, statistics, game leaderboard

typically been integrated into transportation engineering studies but its usage is growing, largely1
because of data generated on smartphones (e.g., (author?) (6)).2

This type of data is currently collected primarily by commercial projects, such as (i) pro-3
prietary issue reporting and tracking systems deployed by local public agencies (e.g. SeeClickFix,4
Comcate, etc.), (ii) proprietary real-time automobile incident reporting (e.g. Waze), and (iii) rating5
systems for points of interest (e.g. Yelp). Including a qualitative component in travel data collec-6
tion has the potential to provide a richer understanding of human behavior, while supporting new7
research areas related to data correctness, bias, and heterogeneity of experience (e.g. the four types8
of cyclists described in (author?) (8)).9

3. Platform-initiated10
This is data that is requested from the user by the platform, such as survey questions. One use of11
requests is to increase the accuracy of inferred data. Examples of such requests are: (i) to obtain12
ground truth for inferences to boost their accuracy; and (ii) to obtain confirmation of unexpected13
behavior. However, requesting large amounts of ground truth re-introduces cognitive load on the14
user. Ground truth acquisition needs to balance accuracy and cognitive load, especially for long-15
term data collection.16

Practitioners can also initiate requests to obtain additional information from a targeted au-17
dience. Examples of such requests include: (i) obtaining stated preference data about proposed18
changes from households that will be affected by them; and (ii) obtain additional demographic19
information (e.g. bicycle availability) from sub-populations based on their travel patterns (e.g. no20
recent bicycle trips). These requests are not necessarily tied to sensed or inferred data, and can be21
fairly complex.22

Supported outputs23
The e-mission platform can process collected data into a number of standard outputs.24
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1. Travel diary1
This output is the canonical analysis result. Every one of the prior projects from the literature fea-2
tures a basic travel diary. It is also the building block for the other outputs, so should be considered3
a core component of a smartphone travel data collection platform.4

A travel diary is a linked sequence of trips between places, each potentially split into sec-5
tions. Each section is associated with a travel mode and each trip is associated with a travel purpose6
or activity. (We suggest using purpose to reduce ambiguity because activity can have other mean-7
ings in a travel context, as in (author?) (27) and (author?) (1).)8

The mobile systems community (since (author?) (26)) and travel survey community (since (author?)9
(23)) have developed several algorithms for automatic mode inference. These typically use GPS10
information alone ((26), (23)) or a combination of GPS and accelerometer data, as in (author?)11
(21). They typically support a small number of modes (e.g. walk, bike, car, bus, train) and have12
accuracies ranging from 70% to 80%. There are fewer algorithms for inferring trip purpose, since13
it is typically not reflected in sensor readings. Most automated approaches such as (author?) (16)14
rely on land use and point-of-interest databases, and the accuracy for locations other than home,15
work and school is below 70%.16

2. Personalized tour model graph17
This output analyses the trip diary to generate a graph of the common trips taken by the user. This18
graph is effectively an amalgamation of tour models, similar to the work in (author?) (22), but19
with common locations among the tours represented by single nodes in the graph. Collapsing a20
long sequence of trips into a single graph allows analysis and modeling to focus on a small number21
of representative trips. For example, detailed semantic data gathering such as stated preference22
questions can focus on trips in the tour, and reduce user burden. Generating probability distribu-23
tions over attributes of the common trips (e.g. start and end times) converts it into a Markov model24
that can be used to potentially predict future behavior, as in (author?) (7).25

3. Game/motivation26
This output uses the travel diary to generate personalized statistics to motivate travelers to think27
more carefully about their travel patterns and associated choices. Some projects, such as (author?)28
(15), calculate personalized calories burned, carbon footprint, and cost for the traveler. Such29
projects also typically compare the personalized value to various aggregate statistics to reinforce30
norm setting, as in (author?) (13). Other projects, such as (author?) (14) or (author?) (3), use31
gamification techniques such as badges, levels, and challenges to encourage long-term behavior32
change.33

Software architecture34
e-mission follows a sensor–server–client architecture that is standard for Internet of Things (IoT)35
applications, where everyday devices are used as digital instruments. In particular, the smartphone36
app is both the sensor and a client, since personalized information can be viewed on the phone.37
The server handles communication, long-term storage, data processing and aggregation. While a38
detailed description of the architecture and the related work is deferred to a forthcoming paper, we39
sketch the components and their interaction in this section.40

The phone app has a hybrid architecture built using the Apache Cordova mobile app frame-41
work. Native plugins for Android and iOS (written in Java and Objective-C) sense location and42
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FIGURE 3: Components of the e-mission architecture

motion activity and buffer the data on the phone in a SQLite database. The sensing is automatically1
turned on at trip start and turned off at trip end to reduce battery consumption. Buffered data is2
synced to the server after the end of the trip. The trip start and end can also prompt a configurable3
notification to collect additional information.4

The server software is written in Python for ease of extensibility by non-experts. It makes5
heavy use of Python scientific processing libraries such as scikit-learn, and exposes a REST API6
for client interaction. It receives data into an input cache, and then saves it into a user-specific7
section of a shared datastore. The user-specific datastore consists of multiple timeseries, one for8
each type of object (e.g. background location, manual incident, etc). The newly arrived data is9
then run through a pipeline that generates the applicable outputs. Travel diary information can also10
be queried for individual or aggregate statistics.11

Finally, certain outputs are displayed as Dynamic HTML views. The view in the phone12
client can displays personalized information such as the trip diary, the tour model, and the user’s13
current status in the game. A web app provides a visual display of aggregate, non-personal, usage14
data.15

USAGE AND EXTENSIBILITY16
In addition to being full-featured, a successful software platform for smartphone data collection17
must be easy to extend so that it can meet the needs of a variety of projects. Small configuration18
changes should be easy, and more significant additions to functionality should be achievable using19
well-defined extension points. Ideally, these changes should be made publicly available for reuse20
and reproducibility ((author?) (12)).21
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Usage without customization1
If the standard e-mission interface and functionality meet the needs for a study, the practitioner can2
simply file a research protocol with her institution’s review board (IRB) and specify that she will3
use the e-mission platform for background location data collection. (This is similar to specifying4
the use of a platform like Qualtrics to collect survey responses.)5

The practitioner would then instruct participants to download the e-mission app from the6
Android or iOS app stores, and obtain separate consent from the participants according to the7
method specified in the protocol. This consent would need to include the email address that the8
participant uses to register in e-mission, in order to confirm which users are associated with the9
study. At the end of the study, the practitioner would show the consent documents to the e-mission10
lead researcher 2 and receive a copy of the data from those users.3 Full in-app consent can be done11
with simple UI customization; see below.)12

Thus, practitioners can collect automatically sensed location and motion activity data with-13
out writing any code, simply by directing survey participants to use the app.14

Extending the smartphone app15
Easy: Customizing the user interface (UI)16
Many practitioners will want to customize the user interface of the app: to add a study logo, to add17
custom consent, or remove unneeded features. This can generally be done with HTML and CSS18
changes alone, although functionality related to message prompts involves Javascript.19

Because the UI is built using web components, it can be updated without deploying a new20
app to the stores. The e-mission platform supports multiple UI channels, meaning that practitioners21
can ask survey participants to install the standard e-mission app and then switch to the study-22
specific channel. A channel can be selected in the UI or by following a special URL or QR code.23
As soon as a user joins the channel, they are presented with study-specific information, consent,24
and login choices.25

Such extensions are shared with the community as new branches on the “e-mission-phone”26
GitHub repository.427

Medium: Extending the phone app using existing plugins28
e-mission is built using the Apache Cordova mobile app framework, which allows easy re-use of29
existing plugins. Functionality like reading a user’s calendar or allowing users to take photos can30
be added in this way. Cordova plugins are controlled using Javascript.31

A phone app that has been extended through the addition of new plugins cannot be updated32
via the UI channels. Instead, a new app would need to be submitted to the stores with a new name33
and signing key. For iOS, the app must pass the App Store review process. The resulting app34
would have no obvious connection to the e-mission platform — it could have its own logo, and35
would be marked as owned by the organization that is submitting it.36

Code for such enhancements can be made available to the community by forking the37
“e-mission-phone” GitHub repository and pushing changes to the fork. Once the project is com-38
plete, the enhancement could even be added to the standard e-mission app (in a new UI pane,39

2K. Shankari, shankari@eecs.berkeley.edu
3The standard e-mission consent document is available here: https://e-mission.eecs.berkeley.edu/consent
4https://github.com/e-mission/e-mission-phone
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for example). This would be done by submitting a pull request to the master branch of the1
“e-mission-phone” repository.2

Hardest: Writing a new native plugin3
Some projects may want to use sensing capability that is not currently supported in the Cordova4
ecosystem, for example by integrating with a sensor that measures stress from sweat, or using5
ambient noise to determine whether a car trip is shared or not.6

This would require writing native code (in Java and Objective-C or Swift) that reads the7
appropriate sensors, buffers them, and performs the inference either on the phone or on the server.8
Such projects can reuse the authentication, buffering, and communication components of the9
e-mission platform. They can also use the notification component to obtain additional informa-10
tion from the user.11

Integration with the e-mission platform would allow the new travel data to be placed in12
a spatio-temporal context without having to re-write the location tracking and post-processing13
components. On iOS, restrictions preclude most sensors from being read in the background, but14
using the e-mission platform would allow plugins to attach themselves to the location tracking15
callbacks in order to read other sensor data.16

Such an extension can be shared with the community by structuring the code as a Cordova17
plugin and publishing it on GitHub. Projects can then add the plugin like any other.18

Extending the server functionality19
Easy: Adding queries or analyses20
Aspects of the server software not related to the core outputs are structured as plugins, where21
new functionality can be added by simply writing a standalone Python script. Some examples are22
queries to find users who are targets for platform-initiated surveys or notifications to inform users23
about things related to their travel patterns. New analyses can be added to e-mission by generating24
a pull request from a fork of the “e-mission-server” repository.525

Medium: Modifying data pipelines26
The existing pipelines for creating travel diaries are open to improvement. Practitioners may want27
to modify the segmentation, smoothing, or mode inference algorithms used by the core platform.28
(These pipelines are versioned in GitHub and can be reproduced at any point on a practitioner’s29
own machine. e-mission always retains the original raw data alongside any pipeline outputs.)30

These improvements will be more complex to integrate into the core platform, because we31
need to ensure that they are empirically valid and enough of an improvement to make the default.32
So while these changes can be contributed using a standard pull request, additional testing will be33
required before the changes can be merged.34

Hardest: Running a custom server35
Some projects may have data storage and privacy requirements that differ from the core platform36
and are best achieved by running their own server. Projects that need special external integrations37
— with an Open Street Maps editor, for example — would also want to run their own server.38
Projects that modify the core data pipelines could also run a custom server to avoid integrating39
their changes with the core e-mission platform.40

5https://github.com/e-mission/e-mission-server
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The e-mission server software can run on any Linux, macOS, or other Unix-like system.1
However, to manage a production backend, you need to be comfortable setting up SSL, obtaining2
the correct keys for authentication, and monitoring the pipeline logs for errors. Changes to the3
server software can be shared with the community by publishing the forked code so that it can be4
used to inform other projects that require similar integrations.5

EVALUATION6
In this section, we evaluate the performance of the platform in two main areas. First, we evaluate7
its usability and stability using metrics from a pilot deployment with more than 100 users. Second,8
we assess the extensibility of the platform through a qualitative and quantitative evaluation of the9
effort required for a non-expert to modify it.10

It is also important to note what we do not evaluate: the travel behavior captured by the11
platform during the pilot. This is because the goal of the pilot was not to generate generalizable12
results about travel behavior, but to evaluate the use of the platform as a tool to enable others to13
generate such results. We also do not currently evaluate the accuracy of data collection or trip14
diary creation, which will be the focus of a future paper. Finally, our goal with this pilot was to15
assess the installation process and technical stability under varied user interaction patterns. In the16
upcoming year, we hope to partner with researchers who want to use the platform in their studies.17
This will allow us to generate usability metrics across more representative populations.18

App usage metrics19
The e-mission platform was launched in a pilot deployment on the U.C. Berkeley campus in Fall20
2016, covering all the categories of data and outputs described earlier.6 Participants were not21
compensated in cash or in kind. The pilot study was linked to an initiative to encourage walking22
and bicycling to campus. There was no dedicated marketing team or marketing budget associated23
with the pilot — all publicity was done by researchers associated with the platform. Recruitment24
was done through email to campus mailing lists, and there was no official endorsement of the pilot25
as a university initiative.26

Installation rate27
This metric captures the rate at which users signed up during the pilot. Ideally, we would use28
metrics from the app stores to measure this, but the iOS store only reports metrics from users who29
have opted in to share statistics, so it is not very accurate. Instead, we use calls to the profile30
creation API endpoint 7, which is invoked when a user first launches the app (Figure 4). This is31
not a perfect metric because it includes app re-installs but it is close (Table 1a). We use calls to the32
game registration endpoint 8 to detect when a user signed up for the game.33

This metric is important because recruitment for traditional travel surveys, and for human-34
subject research in general, is time-consuming and expensive. While this platform does not claim35
to solve all problems with recruitment, painless installation ensures that there are no barriers to36
adoption once participants have been recruited.37

6To aid reproducibility, the Jupyter notebook used to generate these results is available at https://github.com/e-
mission/e-mission-eval. The underlying data can be obtained from the corresponding author, subject to restrictions on
use.

7/profile/create
8/habiticaRegister
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These results show that (i) the app was installed by more than 150 participants; (ii) the in-1
stallations continued for a month after the initial recruitment, presumably through word of mouth;2
and (iii) the gamification was interesting to only 50% of users (Table 1a).3

Length of install4
This metric evaluates the stickiness of the app by measuring the number of days the app was5
installed. Since the phone app automatically uploads data to the server periodically, we use calls6
to the data upload API endpoint 9 as a proxy for the app being active. The install duration for7
a particular user is thus the length of time between the first and last API call. This does not8
distinguish between a user having suspended tracking, and having no trips for a particular period,9
so a user who reported exactly two trips 10 days apart would have an install duration of 10 days.10
If the last call was during the final two days of the analysis period, we assume that the app was not11
uninstalled.12

This metric is important because longer-term data collection enables researchers to capture13
variability in daily travel patterns. Most GPS-enabled household travel surveys now cover multiple14
days: for example, the wearable GPS component of the 2012 California Household Travel Survey15
(CHTS) spanned 3 days ((author?) (17)). Since the recruitment for the pilot was ad-hoc and no16
compensation was provided to participants, we expect that the duration of data collection would17
be robust if the app is used for classic travel surveys.18

The results (Figure 4) are promising. More than 85% of users had the app installed for at19
least 3 days. 23 users (not shown in the histogram) still had the app installed at the end of the20
analysis period. Of the users whose install duration is known, half had the app installed for ≈21
20 days, and a third had it installed for over a month. There were also 16 users who had the app22
installed for just one day.23

App launches over time24
This metric measures user engagement with the app. It tracks two related metrics: app launches25
and screen switches (the latter measures how many times a user switched between screens while26
using the app). App launches are measured by calls to the server API that populates the dashboard,27
while screen switches are indicated by client stats.1028

This metric is important because not all the data is obtained through passive sensors. If we29
want to interact with the user to capture semantic and perceptual data, we need to have a platform30
that engages with the user and encourages her to provide the information that we seek. Designing31
for such engagement is challenging, and one goal of the platform is to facilitate it.32

However, given the expectations about novelty in user interaction, the results (Figure 5)33
are promising. First, they show that although app launches go down after the initial install, they34
never stop completely, and continue even several months after launch. Second, they show that the35
distribution of app launches across users is highly skewed — 80% of users have opened the app36
fewer than 5 times, but 10% of users have opened it more than 150 times. Finally, they show that37
in addition to opening the app, users consistently navigate to other screens, even months after the38

9/usercache/put
10/results/metrics/timestamp populates the dashboad on app launch. Note that there is also an

app_launched client stat, but it does not appear to correspond directly to server calls, so we use the more con-
servative stat in our analysis. The state_changed client stat, filtered to remove changes to and from the splash state
provides the basis for measuring screen switches.
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FIGURE 4: Evaluation of the installation rate and duration. Top: Number of calls to the profile
creation API per day. This is a resonable proxy for the number of installations, since the profile
is created when the user signs in. Bottom: Histogram of user install durations. Install duration is
represented by the time duration between the first and last data sync for a particular user. Note that
23 users did not uninstall the app, so their data is not included in the histogram.
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users

Number of calls from unique users 172
Number of sign-ups 170
Number of new clients sending data 151
Number of unique sign-ups for the game 63

(a) Estimates of the number of installations using
multiple metrics. Note the (≈ 20) discrepancy
between sign-ups and data collection.

Page Lines changed

CSS Style +971
Settings +160
Trip List -95
Trip Detail +70

(b) Lines of code modified for each kind of UI
functionality changed. Note that the trip list code
actually had fewer lines after the changes

TABLE 1: Evaluation metrics for the phone application

install. However, the screen switching is an order of magnitude lower than the app launches. Fi-1
nally, we see a marked dropoff in both metrics around the end of the study period, which coincides2
with winter break.3

Extensibility metrics4
In this section, we evaluate the effort required for a transportation engineering student with no prior5
front-end experience, specifically in HTML/CSS/Javascript, and who has not worked in app or web6
development before, to build a custom UI for the app. We use quantitative metrics, such as lines of7
code, in addition to a brief, open-ended qualitative evaluation of the challenges encountered while8
completing the task. The results show that less than 1500 lines of code and one and a half weeks of9
full-time work are sufficient to generate a dramatically different user interface. This includes the10
learning curve for HTML, CSS and some javascript, and the platform UI in particular. We estimate11
that the time can be reduced to little more than a day with better documentation or better examples12
to draw from.13

Lines of code14
Changes to the UI are shown in Figure 6. These changes consisted mainly of eliminating interface15
panes, keeping only the main ones (profile and diary). Panes were removed by commenting out16
the relevant sections of code. The contents of the profile pane were modified as well, along with17
color schemes, element sizes, and certain icons.18

The diary tab gives users access to the list of trips they have taken on each date, and to the19
details of these trips such as speed profiles and travel modes. This tab was also modified to a new20
theme that changed the flow and amount of information provided to the user. The “details” page in21
the modified version displays the trip breakdowns in HTML tables. The new page also includes a22
button that allows users to fill out a survey about that specific trip. Table 1b illustrates the number23
of lines of code adjusted for each page in addition to the styles page.24

Time required25
Another metric to evaluate the amount of effort put into the customization is to measure the amount26
of time spent understanding the source code, modifying it, and reviewing changes. In this case,27
getting up to speed with the existing code took approximately 75% of the total time, or 40 hours.28
Once the source code was understood, implementing modifications was fairly straightforward.29
Writing new code, debugging it, and testing the results took the remaining 25% of the time, or 1530
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FIGURE 5: Metrics for user interaction and engagement. Top: Number of app launches per
week. Middle: Histogram of the number of app launches per user. Bottom: Screen switches per
day, starting in November, when we started tracking that stat.
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FIGURE 6: Screenshots of customized UI. Top: Base UI on the master branch of the
e-mission-phone repository. Bottom: Customized UI in the joangroup branch of the
e-mission-phone repository.
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hours.1

Qualitative comments2
The major hurdles in customizing the UI were setting up the development environment and un-3
derstanding the source code. This may have been due to relative inexperience with this type of4
software development, but improvements to the documentation would assist newcomers in navi-5
gating through the project and reduce the time required to make modifications.6

CONCLUSION7
The e-mission platform11 aims to make state-of-the-art smartphone travel data collection broadly8
available to researchers and other practitioners. It supports data collection through (i) background9
sensing, (ii) user-initiated reporting, and (iii) contextual, platform-initiated survey questions. Its10
architecture includes native apps for Android and iOS as well as cloud-hosted software for manag-11
ing the collected data, all of which is modular, extensible, and open-source. e-mission can be used12
without modification to the interface or functionality simply by instructing participants to down-13
load the app (and providing consent documents to the corresponding author, to confirm which14
users are involved in the study). New UI “channels” can be created with minimal effort, providing15
study-specific consent forms, branding, and feature combinations. Future development priorities16
span the data collection and output categories defined earlier. To streamline collection of user-17
initiated data, we are looking into a “shake-to-report” feature. This would allow users who want18
to report open-ended perceptual data to shake the phone to report it immediately. In order to guard19
against false positives, the system can generate a notification for the user to confirm the report. For20
travel diary creation, we plan to add support for more travel modes, and to evaluate the collected21
data against various benchmarks. We also plan to improve aspects of the server architecture, in-22
cluding scalability. Additionally, we would like to explore issues of privacy and data ownership,23
especially in the context of aggregated results.24

As described above, improvements to the platform can be contributed by anyone. Valuable25
independent projects could include an adaptive sampling routine for longer trips or an option to26
sync data only over WiFi. Finally, we welcome feedback about the potential to assemble general-27
purpose travel behavior datasets using e-mission. For example, some study participants may be28
comfortable with a research protocol stipulating that, after a certain time delay, their data be avail-29
able to outside researchers who agree to restrictions on its use.30

11https://e-mission.eecs.berkeley.edu; https://github.com/e-mission
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