THE CASE FOR A NEW CONTROL STORE ARCHITECTURE

FOR THE NEXT GENERATION OF VLSI COMPUTERS

de'i,d A. Patterson
SA 80

ABSTRACT

Most computer manufacturers have questioned the usefulness
of providing users with a writeable control store. For reasons
important to computer manufacturers, alterable control store

should be used in the next generation of VLSI computers.

Introduction

Very Large Scale Integrated circuit technology (VLSI) is both a blessing and
a curse for computer manufacturers. Blessed with geometric growth in circuit
complexity, manufacturers can put more and more functions into a single pack-
age. The curse is realized when the manufacturer is faced with designing, test-
ing, and debugging timely products of expanding complexity. One of the main
problems of VLSI computers is control. It is thus not surprising that the
simplified design and debugging of microprogrammed control has made
microprogramming the popular choice for VLSI computers [Stritter 78] [Patter-
son 79, 80] [Nash 79]. For example, two of the current VLSI computers, the 8088
and the MC68000, have microprogrammed control implemented in read only
memory (ROM). Many of these ideas were presented before [Patterson 79, 80];

this paper generalizes these ideas beyond a single ides A @S,

The VLSI growth curve forces a manufacturer to begin the design of the

.

next computer at least as soon as the current computer is announced. We
expect that successors to the 8086, Z8000, and MC68000 are under design or
finished. We also expect that minicomputer and mainframe manufacturers will
introduce VLSI computers. The goal of this paper is to persuade the designers of
these future computers that control store should not be implemented entirely
by ROM. For the purposes of this paper, we define the next generation VLSI chip
to be at least 250,000 devices.* A VLSI computer is then a computer built from
custom VLSI chips. This definition includes single-chip and multi-chip comput-

ers.

We now describe a new control store architecture and then explain four rea-

sons for this design.

A New Control Store Architecture

It is easier to understand the reasons for a new control store architecture if
we present the design first. There are three main concepts of the proposed new

control store architecture:

(A) Kernel ROM: A ROM contains the simple, frequently used instructions plus

bootstrap microcode.

(B) Shared data and address pins: As pins are precious in VLSI, separate pins
for microinstructions and microinstruction addresses cannot be justified.
This control store architecture shares the micro-architecture address and

data lines with the macro-architecture address and data lines.

(C) Microcode cache: Rather than simply use RAM control store, we use an on-
chip cache to contain the most frequently used microinstructions. A com-
plete copy of the microcode is in main memory thereby avoiding the com-

plexity of microcode page faults.**
* As a reference point, the MC68000 has about 70,000 transistors positions of which 40,000
are used (Nash 79). '
** f we allow memory faults to occur for mierocode fetches, then the computer must be able

-3-

The feasibility of each concept is now examined.

There is no problem implementing ROM and RAM on the same chip (e.g.,
8048) and there is ample precedent for having control stores implemented with

both ROM and RAM (e.g., HP 1000, VAX 11/780, IBM 380/85).

The sharing of address lines between architecture levels leads to conflicts.
The first conflict is the form of the address and the data. One level uses macro-
architecture addresses and data types while the other uses those of the micro-
architecture. A cache solves this problem. As shown in Figure 1, the cache con-
troller turns micro-addresses into macro-addresses and macrodata into

microinstructions.

Another conflict occurs when both levels need to use the resource at the
same time. Since one level must wait, this conflict will reduce performance of
the VLSI computer. Again a cache provides the solution. The traditional cache
fetches instructions over a bus and so must the microcache. The microcache,
however, suffers the disadvantage that it must use a bus that is designed to per-
form adequately for the macro-architecture. Thus the time to fetch data over
the bus will take several microinstructions. The question that must be answered
is whether a microcode cache can effectively use a macro-architecture bus

without degrading the performance of the CPU?

Certainly the microcache can use the bus some portion of the time without
degrading performance; if this were not the case the CPU would be bus limited.
This bottleneck would be then removed by adding a cache for instructions and
data. Assume that the microcache can use the bus as much as 10 percent
without degrading performance. Using the notation of I microcycles to fetch a
block for a microcache miss and the hit ratio for the microcache is H, then the

average fraction of bus cycle per microinstruction is @-H)*1. Then varying H and

-4 -

I over reasonable values, we get Table 1. It appears that the hit ratio must
exceed .95 to achieve acceptable bus performance. This seems high, but studies
dealing only with instruction hit ratios are in this range. For example, depend-
ing upon the size of the cache, Smith reports that the hit ratios of a COBOL pro-

gram and a FORTRAN program vary from .95 to .995 [Smith 80].

High microinstruction hit ratios are also predicted by instruction set stu-
dies. Dynamic analysis of instruction sets find that only a few instructions are
responsible for a large percentage of the executed instructions. For example,
the IBM 360 has about 130 instructions, but a measurement of a compiler found
that 10 instructions were responsible for 80% of all instructions executed, 16 use

90%, 21 use 95%, and 30 use 99% [Alexander 75].

The final question is where the microinstructions are stored when they are
not in the microcache. The answer is that the microprogram is stored in what-
ever memory medium is used to store the program. If the VLSI computer is part
of a traditional computer system that includes secondary storage, then the
microcode will eventually be placed there. During system initialization, a copy
of the microcode would be read into the main memory for accesses by the
microcache. If the VLSI computer does not have secondary storage, it still must
have a place to store its program and a:ua place for its microprogram. For

example, if the program is a ROM, then the microprogram would also be in ROM.

We conclude that the microcache is technically feasible for VLSI computers.

We now proceed with the reasons why it is necessary.

H I 1 2 4 8 16 32 64
.80 2 4 .8 1.8 3.2 6.4 12.8
.90 8 1.8 3.2 6.4
.95 4 8 1.6 3.2
.99 .08 .16 .32 .64
e it
.999 | .001 | .002 | .004 .008 .0186 .032 .064
TABLE 1

Values of the fraction of a bus per microinstruction versus the hit ratio H and
the number of microcycles per microcache miss. (Everything below the heavy

line uses the bus 10 percent or less.)

CONTROL LINES

AN RN RN RNR NN EEn
MICRO INSTRUCTION
BUFFER
C ROM
H
E
zzzzza C
ADDRESS K
E
R RAM
3 /N
Z
Z
ADDRESS A] CONTROL
% W
=i DATA MICRO=ARCHITECTURE
. _ _ ADDRESS AND
DATA LINES
- o
CONTROLLER MACRO=ARCHITECTURE
: ADDRESS AND
éééézzzijj: ‘Eé%;;??‘ ;; DATA LINES
t::::::::::ADDRESS ::::::DATA /ICONTROL \l/
/ ?
e]
S 7
‘22 % Z
___________ I R
| OFF - CHIP

FIGURE 1. Microcode Cache Block Diagram.

Reason #1: Microdiagnostics

Testing the current LSI chips is a difficult problem: VLSI chips require that
testing be considered during the design of the chip. Techniques such as signa-
ture analysis [Nadig 77] and level-sensitive scan design (LSSD) [Eichelberger 78]
are being used to simplify testing. Williams and Parker point out three impor-

tant testing problems:

(1) Imitialization: Hardware testing requires the ability to set all memory ele-
ments to a fixed value before the test is run. Quoting Williams and Parker
[Williams 79]:

"Years of practical experience in testing have identified the lack of a
synchronizing sequence as the single most destructive network

(hardware) characteristic with respect to its test.”

(2) Observability: This refers to the ease with which internal states of the

hardware can be examined.

(3) Controllability: This deals with the ease of "steering" the hardware through

its various functions.

These problems are difficult to solve when limited to the macro-
architecture; the natural place is the micro-architecture. Test microprograms,
called microdiagnostics, have been shown to be more accurate, faster, and less
expensive to develop than software diagnostics [Husson 70]. Microdiagnostics
also need a smaller portion of the hardware to be working to be able to correctly
test the rest of the hardware. The combination of testable design methodologies
and microdiagnostics will greatly simplify the task of efficient and thorough test-

ing of VLSI chips.

Another important problem, which occurs before production, is the micro-

architcture acceptance test. During development the micro-architecture is fre-

-8-

quently implemented before the instruction set microprogram is completed.
Thus microdiagnostics are also used to see if the registers and data paths work

as the microprogrammer thinks they should.

As microdiagnostics can be implemented in ROM, why do microdiagnostics

imply new control store architectures? There are two reasons:

(1) Unnecessary Function: Microdiagnostics to perform the functions of initial
design validation and manufacturing checkout are generally not the same
microprograms. The goal of the former is to verify that the micro-
architecture is really what the microprogrammer thinks it is. The goal of
the latter is to test the logic used in the implementation of a debugged
design. The ROM approach would require both functions to be provided
even though the former test is obviously unnecessary after the chip is

manufactured.

() Wasted Silicon: Microdiagnostics are clearly important yet they are rarely
used. A ROM implementation means the chip must dedicate area solely for
this function. This drawback will obviously drastically limit the size and

therefore the effectiveness of microdiagnostics.

Another less serious problem is that changes to the IC layout will likely

require changes to the microdiagnostics.

Our conclusion is that the appropriate memory for diagnostics is not ROM,
and that the importance of good diagnostics (and potential ROM savings) justifies

new control store architectures.

Reason #2: Microprogramming Errors

The trend towards more complex instruction sets is illustrated by the fol-
lowing pairs of computers built by the same companies (the left hand column

contains the predecessors of computers in right hand column):

o

Intel 8080 - 8088
Zilog 780 - 28000
Motorola 8800 - MCe68000
DEC PDP11 - VAX11

Readers familiar with these eight computers will appreciate the increased com-
plexity. One indication of the complexity of the instruction set is the size of the
control store. For example, the size has grown from 256 x 80 in the PDP 11/40

to 5120 x 96 in the VAX 11/780.

The VAX 11/780 design team realized the potential for microcode errors in
the ROM. Their solution was to use an FPLA and 1K words of Writeable Control
Store (WCS) to patch microcode errors. To date 50 patches have been made.*
Although difficult to document, it is likely that the same experience was shared
by IBM, as the 360 line was implemented almost entirely with ROM and the 370

line uses alterable control store exclusively.

Complex instruction sets virtually guarantee the impossibility of getting all
errors out the first version (or perhaps any version) of the microcode. The 8086
and MCB88000 are only about the complexity of the PDP 11. The only 8086 micro-
code error was discovered before the masks were made, but the wrong version
of the microcode was used. The error was corrected by patching the mask that
controlled the contents of control store. The size of control store is 512 x 21
with less than 500 locations used [Stoll 79]. The first version of silicon of the
MC88000 had microcode and circuit mistakes. The second version, which is a
preproduction version called the XC 68000, comes with a short list of exceptions

to the reference manual. The control store is effectively 550 68-bit microin-

were implemented only in WCS. Each patch means several microinstructions must be put
into WCS, so the 50 patches plus existing microroutines use a substantial portion of the 1024
words.

=0

structions** [Nash 79]. The 10000 bit control memory of the 8086 contained
almost no errors, while the virtual 40000 bit control memory of the 88000 had
errors in two versions of microcode. If the instruction sets of the 8086 and
88000 evolve to require a 500,000 bit control memory like the VAX, microcode

errors will be a serious design problem.

With VLSI chips, the response to a microcode error depends on the severity
of the error and when it is discovered in the development-production cycle. The

manufacturer has two solutions to the microcode error problem:

(1) Require error free microcode - The manufacturer must allocate enough
time to exhaustively test each version or simply announce the computer
whenever the microcode is believed to be error free. In the case of the NCR
Criterion, microcode testing and debugging took one year [Ueijo 79]. The
architecture proposed in this paper will work well with this approach as the
VLSI computer need not change; only the contents of the memory that sup-
plies microinstructions must change. Decoupling of the permanent micro-

code store from VLSI chip reduces the time penalty for this approach.

(2) Note the error and correct it in a later version - Given the economics of sili-
con, it is obvious that chips cannot be "recalled". With a microcache, the
manufacturer can release revised versions of microcode as the product is
shipped. Customers that want the latest version can get it from the
manufacturer. Depending upon the environment, this could be done with a

floppy disc or by a new ROM.

Our conclusion is this proposal can reduce development delays due to
microprogramming errors and provide a simple mechanism for correcting

errors.

175 88-bit nanoinstructions.

o &

Reason #3: Saving Silicon

As mentioned above, instruction sets as complicated as the VAX require as
much as 500,000 bits. Even given VLSI estimates of 1985, this is a substantial
portion of one or several chips. A microcode cache may help this problem if it
uses less area than the complete microprogram implemented in ROM. Assume
that most of the logic of a cache is the data memory. For memory chips, a
static RAM cell requires about four times the number of transistors as a ROM cell
[Patterson 79, 80].* Since caches are generally 1/10 to 1/100 the size of the

backing memory, it is likely that less area is needed on chip for a microcache.

Clearly the use of the cache cannot actually save transistors; it can only
move them off the CPU chip and into less expensive, denser, and rapidly
designed memory chips. Our conclusion is that a microcache for complex

instruction sets can actually require less area than ROM on VLSI CPU chips.

Reason #4: Expanding an Architecture

In the case of minicomputer and mainframe computer manufacturers, it is
popular to provide a family of computers of varying cost and performance (e.g.,
PDP 11 and IBM 370). It is not unusual for a family’s architecture to be
enhanced after it has been introduced. For example, IBM added a set of operat-
ing system instructions to the 370, and DEC has extended PDP 11 architecture
by adding commercial-oriented instructions in the PDP 11/44. Given the goals
of the semiconductor manufacturers, a family may not to occur. It is likely,
however, that minicomputer and mainframe computer manufacturers will intro-
duce VLSI computers as a member of a family. If only some members of the
family are enhanced, the manufacturer must have a different set of system pro-

grams for that model. An alternative that avoids this very troublesome and

ment holds for higher ratios.

51D

expensive problem is for VLS] computers to use a microcache.

Summary

This paper began with a new control store architecture that relies upon a

microcode cache plus kernel ROM to implement control memory. Four separate

reasons were presented that require this architecture:

(1)

(2)

(3

(4)

Testing VLSI chips with microdiagnostics implemented in an alterable con-
trol memory allow much more elaborate tests and more effective use of

control memory.

The rising complexity of instruction sets makes microprogramming errors
a serious problem in the development of a new computer. By moving the
complexity off the CPU chips, the proposed architecture significantly

reduces the cost and delay normally implied by these errors.

Since caches are a small fraction of the total program size, and RAM cells
require only about four times the area of ROM, this architecture reduces

the area required by control memory on the CPU chips.

Enhancements to an architecture family are most easily made when all
implementations use an alterable control store. This proposal allows that

feature to be effectively provided in even a VLSI member of that family.

Any of the four reasons can be used to justify using WCS. Collectively, the

issues of chip testing, microcode errors, saving silicon "nanoacres", and archi-

tectural expansions present powerful arguments that the designers of the next

generation of VLSI computers should use the proposed design.

- 18
Acknowledgment

This paper was considerably improved due to discussions with Dileep Bhan-
darkar, Peter Stoll, and Jim Goodman. Al Despain, Dave Ditzel, and Carlo Séquin
gave suggestions on the presentation of this paper. The X-Tree group in general
and Al Despain and Carlo Séquin in particular are responsible for the fertile

environment which suggest, encourage, and examine new ideas.

This research was sponsored by the Defense Advance Research Projects
Agency (DoD), ARPA Order No. 3803, and monitored by Naval Electronic System

Command under Contract No. NOO039-78-G-0013-0004.

References

[Alexander75]

[Anderson79]

[Bell78]

[Despain78]

[Eichelberger78]

[Husson70]

[Nadig77]

[Nash79]

[Patterson79]

o Ll

W.C. Alexander and D.B. Wortman, "Static and Dynamic
characteristics of XPL Programs," Computer, pp. 41-486,

November 1975, Vol. 8, No. 11.

K.R. Anderson and H.A. Perkins, "Hardware Test Technology,"

Computer, pp. 7-8, October 1979, Vol. 12, No. 10.

C.G. Bell, J.C. Mudge, and J.B. McNamara, Computer Engineer-
ing: A DEC View of Hardware System Design, Digital Press,

1978.

AM. Despain and D.A. Patterson, "X-TREE: A Tree Structured
Multi-Processor Computer Architecture,” Conference Proc.,

Fifth Annual Symposium on Computer Architecture, pp. 144-

151, April 3-5, 1978

E.B. Eichelberger and T.W. Williams, "A Logic Design Structure
for LSI Testability,” Journal of Design Automation & Fault-

Tolerant Computing, Vol. 2, No. 2, May 1978, pp. 165-178.

S.S. Husson, Microprogramming: Principles and Practices,

Prentice-Hall, Engelwood, N.J., pp. 109-112, 1970.

H.J. Nadig, "Signature Analysis -- Concepts, Examples and

Guidelines," Hewlett Packard Journal, May 1977, pp. 15-21.

J. Nash and M. Spak, "Hardware and Software Tools for the
Development of a Micro-programed Microprocessor,” 12th

Annual Workshop on Microprogramming, pp. 73-83, November

18-21, Hershey, PA.

D.A. Patterson, E.S. Fehr, and C.H. Séquin, "Design Considera-

tions for the VLSI Processor of X-TREE," Conference Proc.,

[Patterson80]

[Robbi72]

[Smith80]
[Stoll79]

[Stritter78]

[Veijo79]

[Williams79]

-15 -

Sizth Annual Symposium on Computer Architecture, pp. 90-
101, April 23-25, 1979.

D.A. Patter\son and C.H. Séquin, '"Design Considerations for
Single-Chip Computers of the Future," Accepted for publica-
tion, IEEE Journal of Solid- State Circuits, IEEE Transac-
tions on Computers, Joint Special Issue on Microprocessors

and Microcomputers, February 1980.

A.D. Robbi, "Microcache: A Buffer Memory for Micropro-
grams,” COMPCON 72 Digest of Papers, IEEE, September

1972, pp. 123-125.
A.J. Smith, "Cache Memories," in preparation, 1980.
D. Stoll, private communication, 1979.

E. Stritter and N. Tredennick, "Microprogrammed Implemen-
tation of a Single Chip Microprocessor," Proc. 11th Workshop

on Microprogramming, pp. 8-18, November 19-22, 1978.
W. Veijo, private communication, 1979.

T.W. Williams and K.P. Parker, "Testing Logic Networks and
Designing for Testability," Computer, pp. 9-22, October 1979,

Vol. 12, No. 10.

	2ofUs_3
	2ofUs_4
	2ofUs_5
	2ofUs_6
	2ofUs_7
	2ofUs_8
	2ofUs_9
	2ofUs_10
	2ofUs_11
	2ofUs_12
	2ofUs_13
	2ofUs_14
	2ofUs_15
	2ofUs_16
	2ofUs_17

