
Blink: A fast NVLink-based collective
communication library

Guanhua Wang†, Amar Phanishayee⋆, Shivaram Venkataraman⋆, Ion Stoica†

†UC Berkeley ⋆Microsoft Research

1 INTRODUCTION
Fast training of large deep learning models requires train-

ing to scale to many GPUs. Models developed for tasks such

as ImageNet 1K can often take days or even weeks to train

on a single GPU. The most widely used method for reducing

DNN training time is to parallelize themodel training process

using data-parallel stochastic gradient descent (SGD) [1, 3, 5].

In data-parallel training, each GPU has a full copy of the

model parameters and trains independently on a subset of

the inputs. GPUs frequently exchange parameters with the

other GPUs involved in training.

Synchronizing parameters across GPUs introduces signifi-

cant overheads when training at scale — a problem accentu-

ated by the fact that GPU computation is getting faster and

model sizes are growing larger, thus making communication

overheads stand out. Model parameter exchange is often

implemented using collective communications primitives

such as All-Reduce [2]. The NVIDIA Collective Communica-

tions Library (NCCL) [7] is a state-of-the-art implementation

that provides inter-GPU collective communication primitives

over either PCIe or newer interconnects such as NVLink. By

incorporating NCCL into Tensorflow [1], researchers from

Uber show that end-to-end training process can be sped up

by 60% [9].

However, given a topology, NCCL does not always effi-

ciently use all the available links. This is because NCCL uses

ring-based protocols for data transfer and creates as many

rings as possible in a given topology. Consider the topology

in Figure 1 where we do broadcast from GPUA. Since each

link is bi-directional, there are two rings that we can con-

struct as shown in Figure 1(a). Starting from A one ring is

A->B->C->D->A, the other in reverse direction is A->C->D-

>B->A. To do broadcast A can split the data into two parts

and send one part on each ring. Thus if the data size is n and

link bandwidth size is b, the time taken will be
n
2b . We note

that the two cross-bar links from A<->D and B<->C (shown

as dashed lines) are not utilized.

To achieve better link utilization, and consequently faster

transfers, we propose Blink, a family of protocols that use

a broadcast based data transfer scheme and leverage fully

connected groups of GPUs to achieve better efficiency. Blink
also aims to overcome the challenges of topology heterogene-

ity that can be caused by varying number of GPUs used in

A	 B	

C	 D	

(a) NCCL Ring

A	 B	

C	 D	

(b) Blink Broadcast

Figure 1: Link usage comparison between Blink and
NCCL in fully connected 4 nodes scenario.

training, hardware heterogeneity [4, 6], and multi-machine

training. As an example, in Figure 1(b), we show a broadcast

protocol in Blink. In this case data sent from GPUA to GPUB

is then broadcasted to GPUC and GPUD. We can construct

three such forwarding trees and thus the link utilization

improves and total time taken becomes
n
3b .

In general, our protocols follow a hierarchical scheme:

given a network topology, we first divide the network into

groups within which all nodes are fully connected. In the

first phase, we perform internal broadcast where data is ex-
changed using all-to-all communication among nodes within

each fully connected group. In the second phase we per-

form cross-group forwarding, where we communicate across

groups and forward cross group data within the respective

groups. We design protocols for four collective communica-

tion primitives (Broadcast, Gather, All-Gather, All-Reduce)

in Blink. Our experiments using up to 8 GPUs on a NVIDIA

DGX-1 machine [4] show that, Blink can achieve up to 2x

speed up compared with state-of-the-art libraries.

2 BACKGROUND
GPU Interconnect Topology: Our main testbed used in

this work is the NVIDIA DGX-1, which is an architecture

equipped with 8 P100 or V100 GPUs. The GPUs are not only

connected by PCIe but also by a newly designed interconnect

technology called NVLink [8]. NVLink is a high bandwidth

interconnect which can achieve throughput ranging from

20-25 GB/s. As shown in Fig. 2(a), the P100 based DGX-1 has

a NVLink topology that consists of a regular hypercube, plus

2 crossbars within each 4-GPU group.

GPU
0	

GPU
1	

GPU
3	

GPU
2	

GPU
5	

GPU
4	

GPU
6	

GPU
7	

(a) Network Topology of DGX-1’s 8 GPUs inter-

connects with NVLink

GPU
0	

GPU
6	

GPU
3	

GPU
2	

GPU
4	

GPU
5	

GPU
1	

GPU
7	

A1	

A2	

A3	

A4	

B1	

B2	

B3	

B4	

D1	

D2	

D3	

D4	

C1	

C2	

C3	

C4	

F1	

F2	

F3	

F4	

E1	

E2	

E3	

E4	

G1	

G2	

G3	

G4	

H1	

H2	

H3	

H4	

(b) Internal broadcast from GPU0

GPU
0	

GPU
6	

GPU
3	

GPU
2	

GPU
4	

GPU
5	

GPU
1	

GPU
7	

ABCD1	

A2	

A3	

A4	

B1	

ABCD2	

B3	

B4	

D1	

D2	

D3	

ABCD4	

C1	

C2	

ABCD3	

C4	

F1	

EFGH2	

F3	

F4	

EFGH1	

E2	

E3	

E4	

G1	

G2	

EFGH3	

G4	

H1	

H2	

H3	

EFGH4	

(c) Cross-group forwarding from GPU0

Figure 2: Blink AllReduce protocol on DGX-1
Broadcast vsRing: Ring-basedNCCL data transferwastes

links that cannot form a new ring. Given a network topol-

ogy, NCCL divides the topology into disjoint rings which go

through all the nodes. In most of the circumstances, we have

remaining links that cannot form a new ring, leading to idle

or wasted links. In our benchmark test of NCCL on a P100

based DGX-1 machine, it can only form one bi-directional

ring if we use 4 to 7 GPUs (as shown in Fig. 2(a)), leaving

over half of the links idle. For example, if we use 6 GPUs out

of 8 GPUs inside the DGX-1 machine, it only uses 6 out of

16 NVLinks.

3 BLINK
We next illustrate how broadcast-based protocols in Blink

can improve link utilization and handle variable number of

GPUs. For the sake of brevity we limit our discussion to the

AllReduce protocol for the DGX-1 topology.

3.1 AllReduce in Blink
Given the DGX-1 topology, our protocol proceeds in a

hierarchical fashion. We first divide this topology into two

groups, each with 4 fully connected GPUs. We perform a re-

duction within each group using internal broadcast and then

communicate across groups with cross-group forwarding.
Internal Broadcast: In the internal broadcast phase, we use

a reduce-scatter protocol. If we have 4 GPUs in each group,

we partition data on each GPU into 4 chunks. We then let

GPU1, GPU2, GPU3 transmit their 1st chunk of data (i.e.B1,

C1, D1 in Fig. 2(b)) to GPU0, such that after this reduce-

scatter step, GPU0 will have the first chunk of the final result

within the group (i.e. ABCD1). At the same time, we trans-

mit all the 2nd chunk data to GPU1, so that GPU1 has the

final result for the second chunk and so on. At the end of

this phase each GPU will have one chunk of the final result

from within the group. Note that this scheme applies even

when one does not use all the nodes in the group (e.g., when

performing all-reduce across 6 GPUs). As a subset of nodes

from the fully connected group is also fully connected, we

can follow the same internal broadcast described above.

0	
10	
20	
30	
40	
50	
60	
70	

2	 3	 4	 5	 6	 7	 8	

Th
ro
ug
hp

ut
	(G

B/
s)
	

#	of	GPUs	

BLink	

NCCL	2	

Figure 3: All-Reduce benchmark tests comparison be-
tween NCCL 2 and Blink.

Cross-group Forwarding: In cross-group forwarding phase,
we use cross group links to aggregate the other group’s in-

ternal result, and forward the final result within the group.

In our example, GPU0 receives GPU4’s result from the other

group (i.e., EFGH1 in Fig. 2(c)), aggregates
1
with its own

result (i.e. ABCD1), and then forwards the first chunk of the

final result within the group. The whole process is denoted

by the line with arrows in Fig. 2(c). Note that this aggregation

and forwarding can be performed simultaneously.

3.2 Performance Benchmarks
We next present performance benchmarks for the AllRe-

duce scheme described above. We use a NVIDIA DGX-1

machine and initialize 1GB of data on each GPU. We com-

pare the throughput achieved by NCCL 2 and Blink as we
vary the number of GPUs from 2 to 8. As shown in Fig. 3,

compared with NCCL 2, Blink can achieve 2x throughput in

4 to 7 GPUs scenarios. The main reason of this throughput

difference is that Blink can utilize more NVLinks using our

two-step data transfer scheme.

4 FUTUREWORK AND CONCLUSION
This paper proposes Blink, a family of broadcast-based

collective communication primitives. Compared with ring-

based data transfer in NCCL, we show that broadcast based

schemes can achieve better link utilization, higher through-

put and effectively handle varying number of GPUs. In the

future, we plan to extend Blink for cross-machine collective

communication.

1
The data aggregation is usually an add function in all-reduce.

2

REFERENCES
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,

Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasude-

van, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. Tensorflow: A

system for large-scale machine learning. In USENIX OSDI 2016 (2016).
[2] Blaise Barney. Message Passing Interface. https://computing.llnl.gov/

tutorials/mpi/.

[3] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V.,

Mao, M. Z., Ranzato, M., Senior, A., Tucker, P., Yang, K., and Ng,

A. Y. Large scale distributed deep networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems (2012),
NIPS’12.

[4] NVIDIA DGX-1. https://www.nvidia.com/en-us/data-center/dgx-1,

2017.

[5] Goyal, P., Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L.,

Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate, Large Minibatch

SGD: Training ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677
(2017).

[6] Nvidia hgx-1 hyperscale gpu accelerator. https://www.nvidia.com/

en-us/data-center/hgx-1/.

[7] Jeaugey, S. Optimized inter-GPU collective operations with NCCL 2.

https://developer.nvidia.com/nccl, 2017.

[8] NVIDIA NVLINK. http://www.nvidia.com/object/nvlink.html, 2017.

[9] Sergeev, A., and Balso, M. D. Meet Horovod: Uber’s Open Source

Distributed Deep Learning Framework for TensorFlow. https://eng.

uber.com/horovod/, 2017.

3

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
https://www.nvidia.com/en-us/data-center/dgx-1
https://www.nvidia.com/en-us/data-center/hgx-1/
https://www.nvidia.com/en-us/data-center/hgx-1/
https://developer.nvidia.com/nccl
http://www.nvidia.com/object/nvlink.html
https://eng.uber.com/horovod/
https://eng.uber.com/horovod/

	1 Introduction
	2 Background
	3 Blink
	3.1 AllReduce in Blink
	3.2 Performance Benchmarks

	4 Future Work and Conclusion
	References

