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Abstract

Users of cloud services are presented with a bewildering
choice of VM types and the choice of VM can have signif-
icant implications on performance and cost. In this paper
we address the fundamental problem of accurately and
economically choosing the best VM for a given workload
and user goals. To address the problem of optimal VM
selection, we present PARIS, a data-driven system that
uses a novel hybrid offline and online data collection and
modeling framework to provide accurate performance es-
timates with minimal data collection. PARIS is able to
predict workload performance for different user-specified
metrics, and resulting costs for a wide range of VM types
and workloads across multiple cloud providers. When
compared to a sophisticated baseline linear interpolation
model using measured workload performance on two VM
types, PARIS produces significantly better estimates of
performance. For instance, it reduces runtime prediction
error by a factor of 4 for some workloads on both AWS
and Azure. The increased accuracy translates into a 45%
reduction in user cost while maintaining performance.

1 Introduction

As companies of all sizes migrate to cloud environments,
increasingly diverse workloads are being run in the Cloud
— each with different performance requirements and cost
trade-offs [54]. Recognizing this diversity, cloud providers
offer a wide range of Virtual Machine (VM) types. For in-
stance, at the time of writing, Amazon [2], Google [7], and
Azure [38] offered a combined total of over 100 instance
types with varying system and network configurations.

In this paper we address the fundamental problem of
accurately and economically choosing the best VM for a
given workload and user goals. This choice is critical be-
cause of its impact on performance metrics such as runtime,
latency, throughput, cost, and availability. Yet determin-
ing or even defining the “best” VM depends heavily on
the users’ goals which may involve diverse, application-

specific performance metrics, and span tradeoffs between
price and performance objectives.

For example, Figure 1 plots the runtimes and resulting
costs of running a video encoding task on several AWS VM
types. A typical user wanting to deploy a workload might
choose the cheapest VM type (m1.large) and paradoxi-
cally end up not just with poor performance but also high
total costs. Alternatively, overprovisioning by picking the
most expensive VM type (m2.4xlarge) might only offer
marginally better runtimes than much cheaper alternatives
like c3.2xlarge. Thus, to choose the right VM for her
performance goals and budget, the user needs accurate
performance estimates.

Recent attempts to help users select VM types have
either focused on optimization techniques to efficiently
search for the best performing VM type [12], or extensive
experimental evaluation to model the performance cost
trade-off [64]. Simply optimizing for the best VM type for
a particular goal (as in CherryPick [12]) assumes that this
goal is fixed; however, different users might prefer different
points along the performance-cost trade-off curve. For
example, a user might be willing to tolerate mild reductions
in performance for substantial cost savings. In such cases,
the user might want to know precisely how switching to
another VM type affects performance and cost.

The alternative, directly modeling the performance-cost
trade-off, can be challenging. The published VM char-
acteristics (e.g., memory and virtual cores) have hard-
to-predict performance implications for any given work-
load [67, 35, 24]. Furthermore, the performance often
depends on workload characteristics that are difficult to
specify [27, 15, 35]. Finally, variability in the choice of
host hardware and resource contention [54] can result in
performance variability [50] that is not captured in the pub-
lished VM configurations. Recent data driven approaches
like Ernest [64] overcome these limitations through exten-
sive performance measurement and modeling. However
these techniques introduce an O(n2) data collection pro-
cess as each workload is evaluated on each VM type.

The movement towards server-less compute frameworks
such as AWS Lambda [4], Azure Functions [5], or Google
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Figure 1: Execution time and total cost of a video encoding task
on AWS, across various VM types.

Cloud Functions [6] may appear to eliminate the challenges
of VM selection, but in fact simply shift the challenges to
the cloud provider. While cloud providers may have de-
tailed information about their resources, they have limited
visibility into the requirements of each workload.

In this paper we present PARIS, a Performance-
Aware Resource Inference System, which estimates the
performance-cost trade-off for all VM types, allowing
users to balance performance gains with cost reductions.
PARIS is applicable to a broad range of workloads and
performance metrics and works across cloud providers.
PARIS introduces a novel hybrid offline and online data
collection and modeling framework which provides accu-
rate performance estimates with minimal data collection,
eliminating the O(n2) data collection complexity.

The key insight in PARIS is to decouple VM per-
formance characterization from the characterization of
workload-specific resource requirements. By leveraging a
shared profiling framework and established machine learn-
ing techniques PARIS is able to combine these separate
stages to achieve accurate performance predictions for all
combinations of workload and VM type.

In the offline stage, PARIS runs a broad set of bench-
marks with diverse resource requirements and collects ex-
tensive profiling information for each VM type. Intuitively,
the diversity of the resource requirements in the bench-
marks ensures that we observe how each VM type responds
to demands on its resources. Because these benchmarks
are independent of the query workloads, the benchmarks
only need to be run once for each new VM type.

In the online stage, PARIS characterizes each new query
workload by executing a user-specified task that is repre-
sentative of her workload on a pair of reference VMs and
collecting the same profiling statistics as in the offline stage.
These profiling statistics form a fingerprint characterizing
the workload in the same dimensions as the offline bench-
marking process. PARIS then combines this fingerprint
with the offline VM benchmarking data to build an accu-
rate model of the workload performance characteristics
across all VM types spanning multiple cloud providers.

We demonstrate that PARIS is sufficiently general to
accurately predict a range of performance metrics and
their variability for widely deployed batch processing and

(a) Building Apache Giraph (b) YCSB-benchmarks Workload A

Figure 2: (a) Runtime for building Apache Giraph (lower the
better) and (b) Throughput for a 50/50 R/W serving workload on
the Redis in-memory datastore using YCSB (higher the better)
across different VM types offered by AWS and Azure.

serving-style workloads across VMs from multiple public
cloud providers. For instance, it reduces the prediction
error for the runtime performance metric by a factor of 4 for
some workloads on both AWS and Azure. The increased
accuracy translates into a 45% reduction in user cost while
maintaining performance (runtime).

The key contributions of this paper are:
• an experimental characterization of performance trade-

off of various VM types for realistic workloads across
Amazon AWS and Microsoft Azure (Sec. 2).

• a novel hybrid offline (Sec. 4) and online (Sec. 5) data
collection and modeling framework which eliminates
the O(n2) data collection overhead while providing ac-
curate predictions across cloud providers.

• a detailed experimental evaluation demonstrating that
PARIS accurately estimates multiple performance met-
rics and their variabilities (P90 values), for several
real-world workloads across two major public cloud
providers, thereby reducing user cost by up to 45% rela-
tive to strong baseline techniques (Sec. 6.3).

2 Motivation
To illustrate the challenges involved in selecting VM types,
we evaluated three different workloads on a range of VM
types spanning two cloud providers: Amazon AWS and
Microsoft Azure. Below, we present the complex and often
counterintuitive trade-offs between performance and cost.

As an example of a software-build system, we stud-
ied the compilation of Apache Giraph (see Figure 2a) on
a range of compute-optimized instances. As an exam-
ple serving application, we ran a YCSB query processing
benchmark on the Redis in-memory data-store (Figure 2b)
on a range of memory-optimized instances. Finally, as
an example of a more complex task that utilizes multiple
resources, we experimented with a compression workload
that downloads, decompresses, and then re-compresses a

2



(a) Compute-optimized VMs (b) Memory-optimized VMs (c) General-purpose VMs

Figure 3: Runtimes for a compression workload across VM types from different families offered by AWS and Azure. In plot (c),
note the different scale on y-axis.

remote file (Figure 3). This task emulates many standard
cloud-hosted applications, such as video transcoding, that
utilize network, compute, disk, and memory at different
stages in the computation. We ran the compression work-
load on both specialized and general-purpose cloud VMs.

Bigger is not always better: Often users choose to de-
fensively provision the most expensive or the “largest” VM
type under the assumption that larger or more expensive in-
stances provide improved performance. This is not always
true: for building Giraph, the Azure F8 VM type performs
worse than the F4 VM type in spite of being larger. Sim-
ilarly, for the YCSB serving benchmark, the throughput
doesn’t improve much when going from r4.xlarge to
the more expensive r4.2xlarge, making r4.xlarge
a more cost-efficient choice. This suggests that provi-
sioning more resources than the workload needs might be
unnecessary for good performance.

Similar configurations but different performance:
For the YCSB workload (Figure 2b), the AWS R4 fam-
ily performs worse than Azure Dv2 in spite of having a
very similar configuration. By contrast, the R3 and R4
families perform similarly despite the latter using a newer
generation processor. These observations indicate other
factors at play: differences in the execution environment,
and hardware or software differences that are not reflected
in the configuration. Thus, VM type configuration alone
does not predict performance.

Optimizing for mean performance may not optimize
for the tail: For the YCSB workload, Azure VMs provide
improved throughput while AWS VMs provide more con-
sistent performance. A developer of a cloud-hosted service
might prefer a guaranteed throughput to improved but less
predictable throughput. For the compression workload
(Figure 3), some of the Azure VMs showed reduced vari-
ability, even when they lead to a longer expected runtime.
Thus, the best VM type may differ depending on whether
we are interested in the mean or the tail.

Workload resource requirements are opaque: For
workloads that use different resources at different points
during their execution, it can be hard to figure out which

resources are the most crucial for performance [51]. This
is especially challenging for hosted compute services such
as AWS-Lambda where the workload is treated as a black-
box function. For the compression workload (Figure 3a),
memory- and compute-optimized VM types offered lower
runtimes compared to general purpose VM types, indi-
cating that memory or compute, or both, might be the
bottleneck. Yet, counterintuitively, going from r4.l to
r4.xl, or c4.xl to c4.2xl actually hurts performance.
This might be because of the underlying execution envi-
ronment, issues of performance isolation, or the non-linear
dependence of performance on resource availability, none
of which is captured in the resource configuration alone.

Monitoring resources consumed while a task is running
might help identify resources utilized for that run, but will
not tell us how performance is impacted in constrained
settings or on different hardware / software. Profiling the
workload on each VM across all cloud providers will be
informative but prohibitively expensive. We need a much
cheaper solution that can nevertheless predict the perfor-
mance of arbitrary workloads on all VM types accurately.

3 System Overview
PARIS enables cloud users to make better VM type choices
by providing performance and cost estimates on different
VM types tailored to their workload.

PARIS runs as a light weight service that presents a
simple API to the cloud user. The cloud user (or simply
“user”) interacts with PARIS by providing a representative
task of her workload, the desired performance metric, and
a set of candidate VM types. PARIS then calculates the
predicted performance and cost for all of the provided can-
didate VM types. The user can then use this information
to choose the best VM type for any performance and cost
goals. For the user, the interaction looks like this:
# Get performance and cost est. for targetVMs
perfCostMap = predictPerfCost(userWorkloadDocker,

candidateVMs, perfMetric)
# Choose VM with min cost subj. to a perf. req.
chosenVMType = minCost(perfCostMap, perfReq)
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To make accurate performance prediction, PARIS needs
to model two things: a) the resource requirements of the
workload, and b) the impact of different VM types on
workloads with similar resource requirements. However,
exhaustively profiling the user’s workload on all VM types
is prohibitively expensive. To avoid the cost overhead,
PARIS divides the modeling task into two phases (Fig-
ure 4): a one-time, offline, extensive VM type benchmark-
ing phase (Section 4) and an online, inexpensive work-
load profiling phase (Section 5). We provide a high-level
overview of each phase below and then elaborate on each
phase in the subsequent sections.

In the offline VM-benchmarking phase, PARIS uses a
Profiler to run a suite of benchmarks for each VM type
and collect detailed system performance metrics. The
benchmark suite is chosen to span a range of realistic
workload patterns with a variety of resource requirements.
This benchmarking can be run by the cloud providers or
published1 by a third party. As new VM types or physical
hardware is introduced, the benchmark only needs to be
rerun on the new VM types. The offline phase has a fixed
one-time cost and removes the extensive profiling and data
collection from the critical path of predicting performance
characteristics of new user workloads.

In the online phase, end users interact with PARIS by
providing an example or representative task of their work-
load. PARIS first characterizes the resource usage patterns
of the workload by invoking a Fingerprint-Generator. The
Fingerprint-Generator runs the representative task on a
small (typically, 2) set of reference VM types and collects
runtime measurements. We choose reference VM types
that are farthest apart in terms of their configurations, to
capture workload performance in both resource-abundant
and resource-constrained settings. These measurements
capture the resource usage patterns of the task and form
the workload fingerprint. While the fingerprinting process
incurs additional cost, this cost is small and independent
of the number of candidate VM types.

PARIS then combines the fingerprint with the offline
benchmarking data to construct a machine learning model
that accurately estimates the desired performance metrics
as well as the 90th percentile values for corresponding per-
formance metrics for the user workload2. Finally, PARIS
assembles these estimates into a performance-cost trade-
off map across all VM types.

4 Offline VM-benchmarking phase
In the offline benchmarking phase, the profiler uses a set
of benchmark workloads to characterize VM types. These

1We plan to publish our benchmark data across VM types.
2PARIS can predict higher percentiles too, but these require more

samples during fingerprinting, raising user costs.
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Figure 4: Architecture of PARIS (Sec. 3).
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Figure 5: Benchmark workloads chosen from a diverse set of
cloud use-cases [3].

benchmark workloads are chosen to be diverse in terms
of their type, the performance metrics they use, and their
resource requirements (Figure 5). This allows PARIS to
characterize how the different VM types respond to dif-
ferent patterns of resource usage. The set of benchmark
workloads is not exhaustive but rather intended to span the
space of requirements workload requirements. Below we
describe the benchmark workloads in more detail.

We evaluated each VM type on a range of realistic bench-
marks. To represent OLAP-style analytical queries, we
included the join and aggregation queries of Hive [61].
These model complex analytical queries over structured
relational tables and exercise CPU, disk (read), and net-
work. As a representation of latency-sensitive serving
workloads in the cloud, we added YCSB core benchmark
workloads [25] with Aerospike [1], MongoDB [23], Re-
dis [20], and Cassandra [37] datastores. Finally, as an ex-
ample of a multi-stage workload, we constructed a bench-
mark that simulates a hosted compression service, using
the squash compression benchmark [9]. This benchmark
downloads a compressed file over the network and then de-
compresses and re-compresses the file thereby exercising
compute, memory and disk resources.

The Profiler: The profiler records the performance of
each benchmark task for a range of metrics. To accurately
estimate performance variability and p90 values, each task
is run 10 times on each VM type and the empirical 90th

percentile performance is computed over all 10 trials (see
Section 6.2 and Table 2 for details).

During each run, the profiler also records aggregated
measurements that represent the task’s resource usage and
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performance statistics. This leverages instrumentation
mechanisms that are in place in most of today’s infrastruc-
ture [54]. Concretely, we used Ganglia [42] to instrument
the VMs to capture performance and resource counters
at a regular 15 second intervals, and record the average
(or sum, depending on the counter) of these counters over
the task’s run. We collected about 20 resource utilization
counters. These counters span following broad categories:

(a) CPU utilization: CPU idle, system, and user time.
(b) Network utilization: Bytes sent and received.
(c) Disk utilization: Ratio of free to total disk space.
(d) Memory utilization: Available virtual, physical, and

shared memory, and the cache and buffer space.
(e) System-level features: Number waiting, running, ter-

minated, and blocked threads and the host load in the
last 1, 5, and 15 minutes.

5 Online performance prediction
PARIS interacts with users in the online phase. The user
provides PARIS with three things: an example or represen-
tative task from her workload, the performance metric she
cares about, and a set of target or candidate VM types for
which she needs performance and cost estimates.

PARIS first invokes the Fingerprint-Generator, which
runs the user-specified task on the pre-defined set of ref-
erence VM types3, and in the process uses the profiler
described above to collect resource usage and performance
statistics. Because we want to predict the 90th percentile
performance, we run the task 10 times on each reference
VM type and record the 90th percentile performance on
these reference VMs. The resource usage measurements,
and the mean and 90th percentile performance on the two
reference VM types, are put together into a vector F called
the workload fingerprint. Intuitively, because the finger-
print records resource usage information and not just per-
formance, this fingerprint can help us understand the re-
source requirements of the task. This can help us predict
the workload’s performance on other VM types.

The fingerprint tells us the resources used by the task,
and the VM type configuration tells us the available re-
sources. For a single task in isolated environments, if
the relationship between its performance and the available
resources is known, then this information is enough to
predict performance. For example, if, when run on a large
machine, the profile indicates that the task used 2 GB of
memory, and it performs poorly on a reference VM type
with 1 GB of memory, then it might perform poorly on
other VM types with less than 2 GB of memory. Other-
wise, if the task is performing a lot of disk I/O and spends
a lot of time blocked on I/O-related system calls, then I/O

3The reference VM types can also be chosen by the user
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Figure 6: A possible decision tree for predicting performance
from the task fingerprint and VM type configuration.

might be the bottleneck. This kind of reasoning can be
represented as a decision tree comprising of a sequence
of if-then-else statements (Figure 6). Given the workload
fingerprint and the target VM configuration, we follow the
appropriate path down the tree, finally leading to a perfor-
mance prediction. Note that a decision tree can make fairly
complex, non-linear decisions.

Manually specifying a decision tree for each workload
would be prohibitively challenging. We therefore leverage
the data collected from the extensive offline benchmarking
phase in conjunction with established random forest algo-
rithms to automatically train a collection of decision trees
for each workload. Random forests extend the reasoning
behind decision trees to a collection of trees to provide
more robust predictions [18].

5.1 Training the Random Forest Model
To accurately predict the average and tail workload perfor-
mance using the offline benchmark data we train a random
forest model which approximates the function:

g(fingerprint, target vm)→ (perf, p90)

To learn this function we transform the offline benchmark-
ing dataset into a training dataset where each benchmark
has a corresponding fingerprint and known mean and tail
performance for all target VM types.

The fingerprint for each benchmark task is easily ob-
tained by putting together the resource utilization counters
collected while running the task on the reference VMs.
Because we profile each benchmark on each VM type in
the offline phase, these resource utilization counters are
available irrespective of the choice of reference VM types.
The target VM in our model is characterized by the VM
configuration consisting of the number of cores (Azure) or
vcpus (AWS), amount of memory, disk size, and network
performance and bandwidth. Similarly, the offline bench-
marking phase collected both mean and tail latencies for
each benchmark which we use as the targets when training
our model. We feed this training dataset to an off-the-shelf
random forest training algorithm [52]. In our experiments,
training a random forest predictor took less than 2 seconds
in most cases. As an implementation detail, instead of pre-
dicting absolute performance, we predict the performance
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Figure 7: Importance of the various features for AWS (left) and
Azure (right). The random forests were trained to predict runtime
using a compression benchmark workload suite (See Section 6.2).
Reference VMs used: c3.large and r3.2xlarge for AWS
and F2 and D13v2 for Azure.

scaling relative to the first reference VM type. We found
that this led to a simpler learning problem.

Invoking the performance predictors: Once the
model builder has trained random forests for the perfor-
mance metric of interest, for each candidate VM type j, we
feed the user task fingerprint F and the VM configuration
cj as inputs to the two random forests. The random forests
output the mean and 90th percentile performance relative
to the first reference VM. We get absolute performance by
multiplying these predictions with the corresponding mean
and 90th percentile performance on the first VM type.

Performance-Cost Map: Finally, PARIS uses the per-
formance predictions to also estimate the cost for each
VM type. For this we assume that the cost is a function
of the performance metric and the published cost per hour
of the VM, that is either known (for standard performance
metrics such as throughput or latency) or specified by the
user as an additional argument in the call to PARIS. For ex-
ample, for a serving-style workload where performance is
measured by latency, then the total cost per request would
be the latency times the published cost per hour.

PARIS’ estimated performance-cost trade-off enables
users to implement a high-level policy to pick a VM type
for a given workload. For example, a policy could be to
choose a VM type for a workload that has: (a) an esti-
mated cost below a certain constraint C and (b) the best
performance in the worst case. We specify the worst case
performance with a high percentile execution time, such as
90th percentile. An alternative policy might pick an “opti-
mal” VM type that achieves the least cost and the highest
predictable worst-case performance.

5.2 Interpreting the Learned Models
Figure 7 illustrates the top 5 features that the random forest
considers important, for runtime prediction on AWS and
Azure. Here feature importance is based on the intuition
that the decision tree will make early splits based on the
most informative features, and then gradually refine its
prediction using less informative features. Thus important
features are those which frequently appear near the top of
the decision tree. We find that various measures of CPU
usage and the number of CPUs in the target VM figure

prominently, for both AWS and Azure. This makes sense,
since in general the more CPUs, the more the compute
available to the task. However, measures of memory usage
and disk utilization are also important. Note that the actual
features that are used to estimate performance will depend
on the path taken down the tree, which in turn will be
different for different workloads.

6 Evaluation
In this section we answer following questions:

1. Prediction accuracy (Section 6.3): How accurately
does PARIS predict the mean and 90th percentile
values for different performance metrics?

2. Robustness (Section 6.4): Is PARIS robust to
changes in (a) the number and choice of VM types
(6.4.1, 6.4.2), (b) the benchmark workloads used in
the offline profiling phase (6.4.5), and (c) the choice
of modeling technique (regressor) (6.4.3, and 6.4.4)?

3. Usefulness (Sections 6.5, 6.6): (a) Can we convert
PARIS’ performance estimates into actionable infor-
mation (6.5) that reduces cost (6.6)?

6.1 Baselines
No off-the-shelf approach exists for predicting the perfor-
mance of arbitrary workloads on all VM types in the cloud.
Often users defensively provision the most expensive VM
type, but this can lead to excessive costs without perfor-
mance gains (Sec. 2). Alternatively, exhaustively profiling
the workload on every available VM type provides accurate
performance estimates, but is prohibitively expensive.

Instead, we chose two baselines that are similar to
PARIS in terms of user cost, use the published VM config-
urations intelligently, and correspond to what users might
do given the available information and a tight budget:

(a) Baseline1: To reduce the cost, a user might profile
her workload on the “smallest” and “largest” VM types
according to some resource, and then take average per-
formance to be an estimate on an intermediate VM type.
Concretely, suppose VM type 1 obtains performance, (for
instance, runtime), p1, and VM type 2 achieves perfor-
mance p2. Then for a target VM type, one might simply
predict the performance to be ptarget = p1+p2

2 .
(b) Baseline2: Instead of simply averaging the perfor-

mance, Baseline2 interpolates performance based on pub-
lished configurations. Concretely, suppose VM type 1 has
memory m1 and gets performance p1, and VM type 2 has
memory m2 and gets performance p2. Then for a VM
type offering memory m, one might simply predict the
performance to be pmemory(m) = p1+

p2−p1

m2−m1
(m−m1).

Since the user may not know which resource is important,
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Workload Operations Example Application

D Read latest: 95/5 reads/inserts Status updates
B Read mostly: 95/5 reads/writes Photo tagging
A Update heavy: 50/50 reads/writes Recording user-actions

Table 1: Serving benchmark workloads we used from YCSB.
We did not use the Read-Only Workload C, as our benchmark set
covers read-mostly and read-latest workloads.

Workload Number of tasks Time (hours)

Cloud hosted compression (Benchmark set) 740 112
Cloud hosted video encoding (Query set) 12983 433
Serving-style YCSB workloads D,B, A (Benchmark set) 1830 2
Serving-style new YCSB workloads (Query set) 62494 436

Table 2: Details of the workloads used and Dataset collected for
PARIS’ offline and online phases.

she might do such linear interpolation for each resource
and average the predictions together.

6.2 Experimental Set-up
We evaluated PARIS on AWS and Azure, using two widely
recognized types of cloud workloads [14]: (a) Applications
such as video encoding, and compression, and (b) Serving-
style latency and throughput sensitive OLTP workloads.

Common cloud-hosted applications: Video encoding
and compression are common use-cases of the cloud. We
used the squash compression library [9], an abstraction
layer for different compression algorithms that also has
a large set of datasets. For a video encoding workload,
we used libav [47], a set of open source audio and video
processing tools. We set both of these applications in the
cloud, to first download the relevant input data and then
process it. The video encoding application first down-
loads a video using the specified URL, then converts it to
a specified format using various frame-rates, codecs, and
bit-rates. The compression workload downloads a com-
pressed file, decompresses it, and re-compresses it using
different compression algorithms. These workloads have
different resource usage patterns. To show that PARIS can
generalize well across workloads, we chose the compres-
sion application for the offline benchmarking and tested
the models using the video encoding application (Table 2).

Serving-style workloads: We used four common cloud
serving datastores: Aerospike, MongoDB, Redis, and Cas-
sandra. These systems provide read and write access to
the data, for tasks like serving a web page or querying a
database. For querying these systems, we used multiple
workloads from the YCSB framework [25]. We used the
core workloads [11], which represent different mixes of
read/write operations, request distributions, and datasizes.
Table 1 shows the benchmark serving workloads we used
in the offline phase of PARIS. For testing PARIS’ mod-
els, we implemented new realistic serving workloads by

varying the read/write/scan/insert proportions and request
distribution, for a larger number of operations than the
benchmark workloads [10].

Dataset details: Table 2 shows the number of tasks
executed in the offline phase and the corresponding amount
of time spent. Also shown are the workloads and the
number of query tasks used for online evaluation.

Metrics for evaluating model-predictions: We use
the same error metrics for our predictions of different
performance metrics. We measured actual performance
recorded by running a task on the different VM types,
and computed the percentage RMSE (Root Mean Squared
Error), relative to the actual performance:

%Relative RMSE =

√√√√ 1

N

N∑
i=1

(
pi − ai
ai

)2

∗ 100

where N is the number of query tasks, and pi and ai are
the predicted and actual performance of the task respec-
tively, in terms of the user-specified metric. We want the
% Relative RMSE to be as low as possible.

RMSE is a standard metric in regression, but is scale-
dependent: an RMSE of 10 ms in runtime prediction is
very bad if the true runtime is 1 ms, but is acceptable if
the true runtime is 1000 ms. Expressing the error as a
percentage of the actual value mitigates this issue.

6.3 Prediction accuracy of PARIS
We first evaluate PARIS’ prediction accuracy by comparing
PARIS’ predictions to the actual performance obtained by
exhaustively running the same user-provided task on all
VM types. We evaluated PARIS on both AWS and Azure
for (a) Video encoding tasks using runtime as the target
performance metric, and (b) serving-type OLTP workloads
using latency and throughput as the performance metrics.

Overall Prediction Error: Figure 8 compares PARIS’
predictions to those from Baseline1 and Baseline2 for the
mean and 90th percentile runtime, latency and throughput.
Results are averaged across different choices of reference
VMs, with standard deviations shown as error bars.

PARIS reduces errors by a factor of 2 compared to
Baseline2, and by a factor of 4 compared to baseline2.
Note that the cost of all three approaches is the same, cor-
responding to running the user task on a few reference
VMs. This large reduction is because the nonlinear effects
of resource availability on performance (such as hitting a
memory wall) cannot be captured by linear interpolation
(baseline2) or averaging (baseline1).

To better understand why Baseline2 gets such a high
error for some VM types, we looked at how predictions by
Baseline2 varied with the different resources of the target
VMs (num CPUs, memory, disk). In one case, when using
m3.large and c4.2xlarge as our reference VMs, we
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Figure 8: Prediction Error for Runtime, Latency, and Through-
put (expected and p90) for AWS and Azure. a, b: Runtime
prediction for video encoding workload tasks, c-f: Latency and
throughput prediction for Serving-style latency and throughput
sensitive OLTP workloads. The error bars show the standard
deviation across different combinations of reference VMs used.

observed that surprisingly, Baseline2 predicted higher run-
times for VM types with higher disk capacity. Why did the
baseline latch on to this incorrect correlation? In this ex-
ample, the larger reference VM we used, c4.2xlarge,
offered lower runtimes than the smaller reference VM used,
m3.large; however, the smaller reference VM had larger
disk (32GB) than the larger reference VM.

This reveals a critical weakness of the baseline: from
only the performance on two reference VMs and the pub-
lished configurations, the baseline cannot know which
resource is important for workload performance. PARIS,
on the other hand, looks at the usage counters and might
figure out that disk is not the bottleneck for this workload.

We also note that prediction errors are in general larger
for Azure for latency and throughput prediction on the
OLTP workloads. We surmise that this is probably due to
the higher variability of performance on Azure instances
for these workloads, which we pointed out in Section 2.

Prediction Error per VM-type: Figure 9 shows how
the prediction error breaks down over different target VM.
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Figure 9: Errors per target VM type for predicting mean latency,
on AWS (top) and Azure (bottom). Reference VMs used on
AWS: m3.large and c4.2xlarge, and on Azure: A2 and
F8. Error bars show the standard deviation in % Relative RMSE
across the set of over 62K latency-sensitive YCSB queries run
on Aerospike, Cassandra, MongoDb, and Redis data-stores.

This is a representative result, with mean latency as the
performance metric. Reference VM types are m3.large
and c4.2xlarge on AWS, and A2 and F8 on Azure.
PARIS’ errors are consistently low across VM types and
much lower than both baselines.

As before, Baseline2 discovers spurious correlations and
thus often performs worse than Baseline1. Further, both
baselines perform significantly worse than PARIS for most
VM types, perhaps because they lack access to (i) PARIS’
offline VM benchmarking data, and (ii) PARIS’ resource-
utilization statistics, collected in the offline phase as well
as when fingerprinting in the online phase.

6.4 Robustness
6.4.1 Sensitivity to the choice of reference VM types

We experimented with several choices for the 2 reference
VM types. We picked pairs of VM types that were the
farthest apart in terms of a particular resource (number of
cores, amount of memory, disk or storage bandwidth). We
also experimented with randomly chosen reference VMs.
In general, we found PARIS’ predictors to be robust to the
choice of reference VM types.

As a representative result, Figure 10 compares PARIS’
mean and p90 runtime predictions to the baselines for
several reference VM choices using the video encoding
workload. PARIS is both more accurate and more consis-
tent across different reference VM choices. Thus, PARIS
maintains accuracy irrespective of the choice of reference
VM types. The profiling information used by PARIS is
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Figure 10: Sensitivity of PARIS to the choice of Reference VMs.
Errors in predicting mean runtime and 90th percentile runtime
for video encoding tasks using different reference VM types on
AWS (a and b) and Azure (c and d) (Sec. 6.4.1).

consistent and reliable, even when the performance on the
two reference VM types is not informative. Further, sep-
arate predictors for each selection of reference VM types
allow PARIS to learn how performance on the reference
VM types extrapolates to other VM types. In contrast, with
only the runtime on the two VMs and their published con-
figurations to rely on, the baseline latches on to spurious
correlations, and is thus inaccurate.

6.4.2 Sensitivity to number of reference VMs

We experimented with increasing the number of ref-
erence VMs from 2 (m3.large and c4.2xlarge)
to 3 (m3.large, c4.2xlarge and c3.large)
and 4 (m3.large, c4.2xlarge, c3.large, and
c3.xlarge). We found that latency and throughput pre-
diction error decreased slightly or remained the same as
the number of reference VM types increased. % Relative
RMSE for latency prediction remained around 9%, while
for throughput prediction, it decreased from 11.21% with
2 reference VMs to 10.38% with 3 and 10.27% with 4.

Similarly on Azure, the latency prediction error dropped
slightly from 22.89% with 2 reference VMs (A2 and A7) to
21.85% with an additional reference VM (D13v2) and to
19.69% with a 4th additional reference VM (F2). Through-
put prediction error similarly decreased from 24.69% (2
reference VMs) to 18.56% and 18.21% respectively.

This indicates that PARIS is quite robust to the number
of reference VM types and is able to make accurate predic-
tions with only 2 reference VM types. This is because the
profiling information used by PARIS is very informative.

6.4.3 Importance of the choice of regressor

Besides random forests, we also experimented with linear
regression and decision trees for throughput and latency
prediction on AWS (Figure 11). Similar patterns emerged
using Azure VMs (not shown). Linear regression performs
the worst as it isn’t able to capture non-linear relationships
between resource utilization and performance, but owing
to the availability of resource usage counters still performs
better than Baseline2. Regression trees and forests perform
equally better, but the forest provides better accuracy by
combining complementary trees.

6.4.4 Sensitivity to random forest hyperparameters

Figure 12 shows the percentage relative RMSE of PARIS’
latency and throughput predictors for different values of the
two most important hyperparameters used by the random
forest algorithm: (i) Number of features used per tree (NF),
and (ii) Maximum depth of the trees (MD). The predictors
for latency and throughput achieve comparable accuracies
across the different values of NF and MD. This suggests
that the predictors are robust to hyperparameter choices.

6.4.5 Sensitivity to benchmark workloads

Figure 13 shows the percentage relative RMSE of PARIS’
latency and throughput predictors when one of the bench-
mark workloads is removed from the training set at a time.
This figure shows the error averaged over different combi-
nations of reference VM types and the error bars indicate
the standard deviation. The predictors achieve comparable
accuracy on removal of a benchmark workload. We ob-
served a similar trend using the data on Azure for runtime,
latency and throughput predictors of PARIS. This shows
that the predictors are robust to different choices of the
benchmark workloads.

6.5 From Estimated Performance to Action
PARIS presents its performance predictions as a
performance-cost trade-off map that maps each VM type to
the corresponding performance-cost trade-off, for a given
user workload. We first qualitatively explain why we ex-
pect this map to be useful and then quantitatively show
cost-savings in the next section.

Why common VM selection strategies fail: Without
good estimates of performance or cost, users wanting to
deploy workloads on the cloud might:
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Figure 11: Prediction errors for different regressors using different choices of reference VM types on AWS (Sec. 6.4.3)
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Figure 13: Error of PARIS’ latency and throughput predictors
by removing one benchmark workload at a time, averaged across
reference VM types combinations on AWS (Sec. 6.4.5).

(a) Try to minimize cost by choosing the cheapest VM.
(b) Defensively choose a large enough VM, assuming

‘the higher the cost, the better the performance’, or
(c) Pick the largest VM cheaper than a cost constraint.

Figure 1 shows the actual performance and cost for a
video encoding task on each VM type. Note that this infor-
mation is unavailable to users unless they are willing to in-
cur heavy profiling-costs. We can see that strategy a) would
choose m1.large, and lead to higher costs and higher
and less predictable runtimes, possibly violating SLOs: a
bad decision. Strategy b) would select m2.4xlarge and
keep runtime low and predictable but incur higher costs
than an alternative such as c2.2xlarge, which also pro-
vides similar runtime. Strategy c), while reasonable, might
still lead to sub-optimal choices like m3.xlarge, which
offers worse performance than c3.2xlarge for higher
cost. Choosing a VM from over a 100 types across multiple
cloud providers is even harder.

How does PARIS help? PARIS generates a
performance-cost trade-off map with predictions of mean
and p90 values of performance according to the user-

specified performance metric and tailored to a user-
specified task that represents her workload. Figure 14
shows such a trade-off map with predicted latencies (top)
and corresponding task completion costs for a representa-
tive task consisting of a set of 225K YCSB queries on a
Redis data-store that with 225K records. The p90 values
are shown as error bars. The X-axis has different AWS and
Azure VM types in an increasing order of their cost-per-
hour. The reference VMs were A2 and F8 for Azure and
c4.2xlarge and m3.large for AWS.

The user can use this map to choose the best VM for any
performance and cost goals, then run their entire workload
on the chosen VM. The last plot in Figure 14 shows the
true latencies observed when all query tasks from the user
workload are run on each VM. PARIS’ predictions match
these true latencies well. As before, the latencies do not
directly correlate with the published cost-per-hour of the
VMs; F2, for instance, achieves lower latencies than A4v2.
PARIS predicts these counterintuitive facts correctly.

6.6 Quantifying cost savings

PARIS offers users considerable flexibility in choosing
their own performance and cost goals. The precise gains a
user gets from PARIS will depend on these goals. Never-
theless, below we consider two example policies that the
user might follow, and quantify cost savings for each.

6.6.1 Reduced user costs through better decisions

We performed this experiment on AWS, using YCSB-
based serving workloads on Aerospike, MongoDB, Redis,
and Cassandra data stores. We generated two performance-
cost trade-off maps: one using predictions from PARIS
and the other using baseline predictors. For each map,
we chose a VM type for this workload using the policies
described below, executed the workload on this VM type,
and compared costs. We considered two example policies:

Policy I: Policy I picks the VM type with the least
estimated cost provided the predicted runtime is less than
a user-specified threshold, which is expressed as a fraction
β of the mean predicted runtime across VM types.
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predictors over the baseline predictors on AWS for a number of
policies. Policy I chooses the VM type with least predicted cost
provided mean runtime ≤ β times the mean across VMs. Policy
II is similar but thresholds p90 values instead. (Sec. 6.6.1).

Policy II: Instead of predicted runtime, Policy II uses
predicted p90 to choose a VM type based on the same cri-
terion. This policy optimizes for worst case performance.

We varied β in [0.9, 1.1]. As shown in Figure 15, the
user can reduce costs by upto 45% by using performance
and cost estimates from PARIS instead of the baseline.

6.6.2 Cost overheads of PARIS

PARIS does incur some limited overhead to produce the
performance estimates. Part of this overhead is the one-
time cost of offline benchmarking of VM types (see Ta-
ble 2), which is amortized across all user workloads.The
rest of the overhead is the cost of running a user-specified
task on the reference VMs. As shown in Section 6.4.2, two
reference VMs are enough for accurate predictions.

To quantify the cost overheads of PARIS empirically,
we computed the cost of the offline VM benchmarking
phase and the cost for fingerprinting each user-specified
representative task in the online performance prediction
phase. We compared this cost to the cost incurred by an
alternative that exhaustively runs the task on each VM
type to choose the right VM type. This alternative strategy
is what would be followed by systems like Ernest [64]
(Ernest also performs additional profiling to determine the
number of VMs; this is not included in our comparison).
Figure 16 shows this comparison for the mean and p90
latency prediction task using core YCSB queries A and B
as train and a set of 50 newly implemented workloads as
the user-specified representative tasks. For this experiment,
we used the cost of the VMs per unit time published by
the cloud providers. We note that PARIS has a non-zero
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Figure 16: Cost overheads of PARIS compared to brute-force
profiling on all VM types (e.g., in Ernest [64]).

initial cost due to the offline VM benchmarking phase, but
once this phase is over, the additional cost of fingerprinting
each new user-specified task is much lower than the cost of
Ernest’s exhaustive search. Ernest’s cumulative cost grows
at a much higher rate than PARIS’ and overtakes the latter
after about 15 tasks. PARIS is therefore lightweight.

7 Limitations and Next Steps
PARIS assumes the availability of a representative task
from a user workload. Including task-specific features,
such as input size, can enable generalization across tasks.
While our current version requires separate fingerprints
for each cloud provider, our modeling framework can be
extended to include multiple providers. PARIS is not aimed
at estimating scaling behavior, but can be combined with
approaches such as Ernest [64] that tackle that problem.
PARIS can also be extended to work with customizable
VM sizes in the cloud, for instance, custom images by
Google Cloud Engine [7].

8 Related Work
Both classical batch systems [28, 29, 13] and modern clus-
ter management systems such as Amazon EC2 [2], Euca-
lyptus [48], Condor [53], Hadoop [69, 8, 70], Quincy [34],
and Mesos [33, 31] need resource requirements from the
user. By contrast, PARIS does not need knowledge of
resource requirements and complements these systems.
Performance prediction based on system modeling:
There is prior work on predicting performance based on
system properties and workload patterns [21, 45, 49, 16].

Pseudoapp [58] creates a pseudo-application with the
same set of distributed components and executes the same
sequence of system calls as those of the real application.
This assumes complete knowledge of what the real appli-
cation is doing, which is often unavailable. Ernest [64]
predicts the runtime of distributed analytics jobs as a func-
tion of cluster size. However, Ernest cannot infer the per-
formance of new workloads on a VM type without first
running the workload on that VM type. Quasar [27] tries to

predict the performance impact of various resource alloca-
tion decisions on workload performance by extrapolating
performance from a few profiling runs. This cannot cap-
ture the kind of detailed resource utilization information
that is present in the workload fingerprints used by PARIS.

Interference Prediction: Interference is a major hin-
drance in accurate performance estimation. There is work
on placing applications on particular resources to reduce
interference, either by co-scheduling applications with dis-
joint resource requirements [59, 19, 56, 71, 73, 43, 44],
or by trial and error[60, 41, 72]. However, users request-
ing VM types in cloud services like Amazon EC2 cannot
usually control what applications get co-scheduled.

Prior work has used performance models to predict inter-
ference among applications [32, 66, 65, 36, 62, 57, 26, 27].
Some approaches rely on dynamically monitored hardware-
level features, such as CPI (Cycles Per Instruction) or CMR
(Cache Miss Rate) for interference prediction; however
they aim to consolidate VMs on underlying physical ma-
chines [22, 39, 40]. Compared to these hardware-level
counters, the 40 VM-level resource usage counters used by
PARIS are both more informative and more easily available
in public cloud environments.

Adaptive control systems: Instead of, or in addition to,
predicting performance, some systems adaptively allocate
resources based on feedback. For example, Rightscale [55]
for EC2 creates additional VM instances when the load of
an application crosses a threshold. Yarn [63] determines
resource needs based on requests from the application.
Other systems have explicit models to better inform the
control system, e.g., [17, 30, 46].

Wrangler [68] identifies overloaded nodes in map-
reduce clusters and delays scheduling jobs on them.
Quasar [27] dynamically updates estimates of the sensi-
tivity of an application’s performance to heterogeneity,
interference, scale-up and scale-out of resources. Unlike
these systems, PARIS does not control online scheduling
decisions, but can be used to inform the resource manage-
ment system of the requirements for the application.

9 Conclusion
In this paper we presented PARIS, a system that allows
users to choose the right VM type for their goals through
accurate and economical performance estimation. PARIS
decouples the characterization of VM types from the char-
acterization of workloads, thus eliminating the O(n2) cost
of performance estimation while delivering accurate per-
formance predictions across VM types. We showed em-
pirically that PARIS accurately predicts mean and tail per-
formance for many realistic workloads and performance
metrics across multiple clouds, and results in more cost
effective decisions while meeting performance goals.
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