Ray
A Distributed Execution Framework for Emerging AI Applications

BDD/RISE mini-retreat

Philipp Moritz
Emerging AI applications
Emerging AI applications
Emerging AI applications
Interacting with an environment

Agent

Policy: state \rightarrow action

Environment

action
state (observation)
reward
Things that are hard with current distributed systems
Things that are hard with current distributed systems

- Reinforcement learning training
- Fine-grained task parallelism with heterogeneous tasks
- Planning in real-time for a robot
Things that are hard with current distributed systems

- Reinforcement learning training
- Fine-grained task parallelism with heterogeneous tasks
- Planning in real-time for a robot

Requirements

- Low latency tasks
- High throughput tasks
- Adapt computation based on task progress
- Complex task dependencies
- Nested parallelism, dynamic task graph construction
- Tolerance of machine failures
- Seamless usage of GPUs and other accelerators
Example: RL training

```python
def train(env, hyperparameters):
    policy = initial_policy()
    for _ in range(1000):
        trajectories = [rollout(policy, env) for _ in range(K)]
        policy.update(trajectories)
    return policy

def rollout(policy, env):
    # alternately evaluate policy and simulate env
```
Example: RL training

```python
def train(env, hyperparameters):
    policy = initial_policy()
    for _ in range(1000):
        trajectories = [rollout(policy, env) for _ in range(K)]
        policy.update(trajectories)
    return policy

def rollout(policy, env):
    # alternately evaluate policy and simulate env

while True:
    train(env, random_hyperparameters()):
```

Example: RL training

```python
@ray.remote
def train(env, hyperparameters):
    policy = initial_policy()
    for _ in range(1000):
        trajectories = ray.get([rollout.remote(policy, env) for _ in range(K)])
        policy.update(trajectories)
    return policy

@ray.remote
def rollout(policy, env):
    # alternately evaluate policy and simulate env
    while True:
        train.remote(env, random_hyperparameters()):
```
Example: simulators on CPUs, policies on GPUs

Options:
1) One task per CPU, do everything on CPUs.
2) One task per GPU (batch policy evaluation on GPU).
3) Many tasks. Policy evaluation on GPUs and simulator on CPUs.
Example: simulators on CPUs, policies on GPUs

Options:
1) One task per CPU, do everything on CPUs.
2) One task per GPU (batch policy evaluation on GPU).
3) Many tasks. Policy evaluation on GPUs and simulator on CPUs.
Example: simulators on CPUs, policies on GPUs

Options:
1) One task per CPU, do everything on CPUs.
2) One task per GPU (batch policy evaluation on GPU).
3) Many tasks. Policy evaluation on GPUs and simulator on CPUs.
Ray API
def zeros(shape):
 return np.zeros(shape)

def dot(a, b):
 return np.dot(a, b)
Ray API - remote functions

```python
@ray.remote
def zeros(shape):
    return np.zeros(shape)

@ray.remote
def dot(a, b):
    return np.dot(a, b)
```
Ray API - remote functions

```python
@ray.remote
def zeros(shape):
    return np.zeros(shape)

@ray.remote
def dot(a, b):
    return np.dot(a, b)

id1 = zeros.remote([5, 5])
id2 = zeros.remote([5, 5])
id3 = dot.remote(id1, id2)
ray.get(id3)
```
Ray API - remote functions

```python
@ray.remote
def zeros(shape):
    return np.zeros(shape)

@ray.remote
def dot(a, b):
    return np.dot(a, b)

id1 = zeros.remote([5, 5])
id2 = zeros.remote([5, 5])
id3 = dot.remote(id1, id2)
ray.get(id3)
```

- Blue variables are Object IDs.
Ray API - remote functions

```python
@ray.remote
def zeros(shape):
    return np.zeros(shape)

@ray.remote(num_gpus=2)
def dot(a, b):
    return np.dot(a, b)

id1 = zeros.remote([5, 5])
id2 = zeros.remote([5, 5])
id3 = dot.remote(id1, id2)
ray.get(id3)
```

- Blue variables are Object IDs.
- Can specify GPU requirements
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter()
c.inc() # This returns 1
c.inc() # This returns 2
c.inc() # This returns 3
Ray API - actors

```python
@ray.actor
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.actor()
id1 = c.inc()
id2 = c.inc()
id3 = c.inc()
ray.get([id1, id2, id3])  # This returns [1, 2, 3]
```
Ray API - actors

```
@ray.actor
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter().actor()
id1 = c.inc()
id2 = c.inc()
id3 = c.inc()
rays.get([id1, id2, id3])  # This returns [1, 2, 3]
```

- State is shared between actor methods.
- Actor methods return **Object IDs**.
Ray API - actors

@ray.actor(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter().actor()
id1 = c.inc()
id2 = c.inc()
id3 = c.inc()
ray.get([id1, id2, id3]) # This returns [1, 2, 3]

- State is shared between actor methods.
- Actor methods return **Object IDs**.
- Can specify **GPU** requirements.
Ray Architecture
System Architecture
System throughput

![Graph showing system throughput vs number of nodes]
Single machine throughput
Object store performance

![Graph showing object store performance with IOPS and bandwidth (MBps) as functions of object size (bytes).]
Robustness to node failure
Experiments
Speeding up rollouts for policy gradients

- Parallel Rollouts on CPU
- Policy Evaluation on GPU
- Fine grained rollouts

Speedup:
- 1.0x
- 1.3x
- 4.1x
Evolution strategies

<table>
<thead>
<tr>
<th></th>
<th>10 nodes</th>
<th>20 nodes</th>
<th>30 nodes</th>
<th>40 nodes</th>
<th>50 nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>97K</td>
<td>215K</td>
<td>202K</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ray</td>
<td>152K</td>
<td>285K</td>
<td>323K</td>
<td>476K</td>
<td>571K</td>
</tr>
</tbody>
</table>

The Ray implementation takes half the amount of code and was implemented in a couple of hours.
Hierarchical A3C

![Graph showing the performance of Hierarchical A3C and A3C over time](image)

- **Hierarchical A3C**
- **A3C**
Ray is a system for AI Applications

- Ray is open source! https://github.com/ray-project/ray
- We have a pre-release!
- We’d love your feedback.