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ABSTRACT 1. INTRODUCTION 4d in Scala [5), a
Caffe provides multimedia scientists and practitioners with A key problem in multimedia data analysis is discovery of fg language for th
a clean and modifiable framework for state-of-the-art deep cffective ions for sensory inputs—images, sound- programming intef
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The framework is a BSD-licensed C++ library with Python ~ handcrafted features has plateaued in recent years, new de- 4 version of the

and MATLAB bindings for training and deploying general- in deep it i have kept to define RDDs,
purpose convolutional neural networks and other deep mod- ~ performance levels rising [8]. Deep models have outper- \hem in paralle
els efficiently on commodity architectures. Caffe fits indus- formed hand-engi feature ions in many do- © them In paralie
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Abstract

We propose a parameter server framework to solve distributed machine learning
problems. Both data and workload are distributed into client nodes, while server
nodes maintain globally shared parameters, which are represented as sparse vec-
tors and matrices. The framework manages asynchronous data communications
between clients and servers. Flexible consistency models, elastic scalability and
fault tolerance are supported by this framework. We present algorithms and theo-
retical analysis for i and problems. To demon-
strate the ility of the proposed f; , we show i results on
real data with billions of parameters.
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Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds
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[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html
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Prediction-Serving Raises
New Challenges
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Support low-latency, high-throughput serving workloads

Models getting more complex
» 10s of GFLOPs [1]

Deployed on critical path  Using specialized hardware
> Maintain SLOs under heavy load for predictions

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.
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Large and growing ecosystem of ML models and frameworks
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Big Companies Build One-Off Systems

Problems:
» Expensive to build and maintain

» Highly specialized and require ML and
systems expertise

» Tightly-coupled model and application
» Difficult to change or update model
» Only supports single ML framework



Large and growing ecosystem of ML models and frameworks

Difficult to deploy and
brittle to manage

Varying physical
resource requirements



But most companies
can't build new
serving systems...



Use existing systems: Offline Scoring
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Use existing systems: Offline Scoring
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Use existing systems: Offline Scoring
Look up decision in datastore
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Use existing systems: Offline Scoring

Problems:
» Requires full set of queries ahead of time
» Small and bounded input domain

» Wasted computation and space
» (Can render and store unneeded predictions

» Costly to update
» Re-run batch job
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How does Clipper address
these challenges?



Clipper Solutions

d Simplifies deployment through layered
architecture

d Serves many models across ML
frameworks concurrently

d Employs caching, batching, scale-out
for high-performance serving



Clipper Decouples Applications and Models
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Improve accuracy through bandit methods and
ensembles, online learning, and personalization

Model Selection Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

rRPC] rRrc]  RPC]
Model Container (MC)
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Selection Policy Model Selection Layer
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Selection Policy Model Selection Layer

Selection policies supported by Clipper
» Exploit multiple models to estimate confidence

» Use multi-armed bandit algorithms to learn
optimal model-selection online

» Online personalization across ML frameworks

*See paper for details INSDI 2017]
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Adaptive Batching to Improve Throughput

» Why batching helps:

A single

page load
may generate
many queries

Hardware
Acceleration

"GRP Helps amortize
1 system overhead

» Optimal batch depends on:
» hardware configuration
» model and framework
» system load

Clipper Solution:
Adaptively tradeoff latency and throughput...

» Inc. batch size until the latency objective
is exceeded (Additive Increase)

> If latency exceeds SLO cut batch size by
a fraction (Multiplicative Decrease)



Conclusion

» Prediction-serving is an important and challenging area for systems
research

» Support low-latency, high-throughput serving workloads
» Serve large and growing ecosystem of ML frameworks
» Clipper is a first step towards addressing these challenges
»  Simplifies deployment through layered architecture
» Serves many models across ML frameworks concurrently

» Employs caching, adaptive batching, container scale-out 1o meet interactive
serving workload demands

» Beyond academic prototype to build a real, open-source system

https://github.com/ucbrise/clipper

crankshaw(@cs.berkeley.edu



