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Prediction-Serving for interactive applications
Timescale: ~10s of milliseconds
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82,000 GPUs 
running 24/7

[1] https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html

140 billion words a day1
Invented New Hardware!
Tensor Processing Unit 

(TPU)



Prediction-Serving Raises 
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Models getting more complex
Ø 10s of GFLOPs [1]

Support low-latency, high-throughput serving workloads

Using specialized hardware 
for predictions

Deployed on critical path
Ø Maintain SLOs under heavy load

[1] Deep Residual Learning for Image Recognition. He et al. CVPR 2015.
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Big Companies Build One-Off Systems

Problems:
Ø Expensive to build and maintain

Ø Highly specialized and require ML and 
systems expertise

Ø Tightly-coupled model and application
Ø Difficult to change or update model

Ø Only supports single ML framework
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But most companies 
can’t build new 

serving systems…
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Look up decision in datastore

Low-Latency Serving

X Y

Problems:
Ø Requires full set of queries ahead of time

Ø Small and bounded input domain
Ø Wasted computation and space

Ø Can render and store unneeded predictions
Ø Costly to update

Ø Re-run batch job

Use existing systems: Offline Scoring
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How does Clipper address 
these challenges?



q Simplifies deployment through layered 
architecture

q Serves many models across ML 
frameworks concurrently

q Employs caching, batching, scale-out 
for high-performance serving

Clipper Solutions
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Clipper Architecture

Clipper
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Applications
Predict ObserveRPC/REST Interface

MC MC MC
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through bandit methods and 
ensembles, online learning, and personalization

Model Container (MC)
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Clipper
Model Selection LayerSelection Policy

Selection policies supported by Clipper
ØExploit multiple models to estimate confidence
Ø Use multi-armed bandit algorithms to learn 

optimal model-selection online
Ø Online personalization across ML frameworks

*See paper for details [NSDI 2017]
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Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Ø Why batching helps:
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A single 
page load 
may generate
many queries

Clipper Solution:

Adaptively tradeoff latency and throughput…

Ø Inc. batch size until the latency objective 
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size by 
a fraction (Multiplicative Decrease)

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead

Ø Optimal batch depends on:
Ø hardware configuration
Ø model and framework
Ø system load

Batching to Improve ThroughputAdaptive



Conclusion
Ø Prediction-serving is an important and challenging area for systems 

research
Ø Support low-latency, high-throughput serving workloads
Ø Serve large and growing ecosystem of ML frameworks

Ø Clipper is a first step towards addressing these challenges
Ø Simplifies deployment through layered architecture
Ø Serves many models across ML frameworks concurrently
Ø Employs caching, adaptive batching, container scale-out to meet interactive 

serving workload demands
Ø Beyond academic prototype to build a real, open-source system

https://github.com/ucbrise/clipper
crankshaw@cs.berkeley.edu


