
Ground: A Data Context Service

Joseph M. Hellerstein*◦, Vikram Sreekanti*, Joseph E. Gonzalez*, James Dalton4,
Akon Dey], Sreyashi Nag§, Krishna Ramachandran\, Sudhanshu Arora‡,

Arka Bhattacharyya*, Shirshanka Das†, Mark Donsky‡, Gabe Fierro*, Chang She‡,
Carl Steinbach†, Venkat Subramanian[, Eric Sun†

*UC Berkeley,
◦

Trifacta, 4Capital One,]Awake Networks, §University of Delhi, \Skyhigh Networks, ‡Cloudera, †LinkedIn, [Dataguise

ABSTRACT
Ground is an open-source data context service, a system to manage
all the information that informs the use of data. Data usage has
changed both philosophically and practically in the last decade,
creating an opportunity for new data context services to foster further
innovation. In this paper we frame the challenges of managing data
context with basic ABCs: Applications, Behavior, and Change. We
provide motivation and design guidelines, present our initial design
of a common metamodel and API, and explore the current state of
the storage solutions that could serve the needs of a data context
service. Along the way we highlight opportunities for new research
and engineering solutions.

1. FROM CRISIS TO OPPORTUNITY
Traditional database management systems were developed in an

era of risk-averse design. The technology itself was expensive,
as was the on-site cost of managing it. Expertise was scarce and
concentrated in a handful of computing and consulting firms.

Two conservative design patterns emerged that lasted many
decades. First, the accepted best practices for deploying databases
revolved around tight control of schemas and data ingest in support
of general-purpose accounting and compliance use cases. Typical
advice from data warehousing leaders held that “There is no point
in bringing data . . . into the data warehouse environment without
integrating it” [17]. Second, the data management systems designed
for these users were often built by a single vendor and deployed as a
monolithic stack. A traditional DBMS included a consistent storage
engine, a dataflow engine, a language compiler and optimizer, a
runtime scheduler, a metadata catalog, and facilities for data ingest
and queueing—all designed to work closely together.

As computing and data have become orders of magnitude more
efficient, changes have emerged for both of these patterns. Usage
is changing profoundly, as expertise and control shifts from the
central accountancy of an IT department to the domain expertise of
“business units” tasked with extracting value from data [14]. The
changes in economics and usage brought on the “three Vs” of Big
Data: Volume, Velocity and Variety. Resulting best practices focus
on open-ended schema-on-use data “lakes” and agile development,

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, provided
that you attribute the original work to the author(s) and CIDR 2017.
CIDR ’17 January 8-11, 2017, Chaminade, CA, USA

in support of exploratory analytics and innovative application intel-
ligence [28]. Second, while many pieces of systems software that
have emerged in this space are familiar, the overriding architecture
is profoundly different. In today’s leading open source data man-
agement stacks, nearly all of the components of a traditional DBMS
are explicitly independent and interchangeable. This architectural
decoupling is a critical and under-appreciated aspect of the Big Data
movement, enabling more rapid innovation and specialization.

1.1 Crisis: Big Metadata
An unfortunate consequence of the disaggregated nature of con-

temporary data systems is the lack of a standard mechanism to
assemble a collective understanding of the origin, scope, and usage
of the data they manage. In the absence of a better solution to this
pressing need, the Hive Metastore is sometimes used, but it only
serves simple relational schemas—a dead end for representing a
Variety of data. As a result, data lake projects typically lack even the
most rudimentary information about the data they contain or how it
is being used. For emerging Big Data customers and vendors, this
Big Metadata problem is hitting a crisis point.

Two significant classes of end-user problems follow directly from
the absence of shared metadata services. The first is poor produc-
tivity. Analysts are often unable to discover what data exists, much
less how it has been previously used by peers. Valuable data is
left unused and human effort is routinely duplicated—particularly
in a schema-on-use world with raw data that requires preparation.
“Tribal knowledge” is a common description for how organizations
manage this productivity problem. This is clearly not a systematic
solution, and scales very poorly as organizations grow.

The second problem stemming from the absence of a system to
track metadata is governance risk. Data management necessarily
entails tracking or controlling who accesses data, what they do with
it, where they put it, and how it gets consumed downstream. In
the absence of a standard place to store metadata and answer these
questions, it is impossible to enforce policies and/or audit behavior.
As a result, many administrators marginalize their Big Data stack as
a playpen for non-critical data, and thereby inhibit both the adoption
and the potential of new technologies.

In our experiences deploying and managing systems in produc-
tion, we have seen the need for a common service layer to support
the capture, publishing and sharing of metadata information in a
flexible way. The effort in this paper began by addressing that need.

1.2 Opportunity: Data Context
The lack of metadata services in the Big Data stack can be viewed

as an opportunity: a clean slate to rethink how we track and lever-
age modern usage of data. Storage economics and schema-on-use
agility suggest that the Data Lake movement could go much farther
than Data Warehousing in enabling diverse, widely-used central

repositories of data that can adapt to new data formats and rapidly
changing organizations. In that spirit, we advocate rethinking tradi-
tional metadata in a far more comprehensive sense. More generally,
what we should strive to capture is the full context of data.

To emphasize the conceptual shifts of this data context, and as a
complement to the “three Vs” of Big Data, we introduce three key
sources of information—the ABCs of Data Context. Each represents
a major change from the simple metadata of traditional enterprise
data management.

Applications: Application context is the core information that de-
scribes how raw bits get interpreted for use. In modern agile scenar-
ios, application context is often relativistic (many schemas for the
same data) and complex (with custom code for data interpretation).
Application context ranges from basic data descriptions (encodings,
schemas, ontologies, tags), to statistical models and parameters, to
user annotations. All of the artifacts involved—wrangling scripts,
view definitions, model parameters, training sets, etc.—are critical
aspects of application context.

Behavior: This is information about how data was created and used
over time. In decoupled systems, behavioral context spans multiple
services, applications and formats and often originates from high-
volume sources (e.g., machine-generated usage logs). Not only
must we track upstream lineage— the data sets and code that led to
the creation of a data object—we must also track the downstream
lineage, including data products derived from this data object. Aside
from data lineage, behavioral context includes logs of usage: the
“digital exhaust” left behind by computations on the data. As a result,
behavioral context metadata can often be larger than the data itself.

Change: This is information about the version history of data, code
and associated information, including changes over time to both
structure and content. Traditional metadata focused on the present,
but historical context is increasingly useful in agile organizations.
This context can be a linear sequence of versions, or it can encom-
pass branching and concurrent evolution, along with interactions
between co-evolving versions. By tracking the version history of all
objects spanning code, data, and entire analytics pipelines, we can
simplify debugging and enable auditing and counterfactual analysis.

Data context services represent an opportunity for database tech-
nology innovation, and an urgent requirement for the field. We are
building an open-source data context service we call Ground, to
serve as a central model, API and repository for capturing the broad
context in which data gets used. Our goal is to address practical
problems for the Big Data community in the short term and to open
up opportunities for long-term research and innovation.

In the remainder of the paper we illustrate the opportunities in
this space, design requirements for solutions, and our initial efforts
to tackle these challenges in open source.

2. DIVERSE USE CASES
To illustrate the potential of the Ground data context service, we

describe two concrete scenarios in which Ground can aid in data
discovery, facilitate better collaboration, protect confidentiality, help
diagnose problems, and ultimately enable new value to be captured
from existing data. After presenting these scenarios, we explore the
design requirements for a data context service.

2.1 Scenario: Context-Enabled Analytics
This scenario represents the kind of usage we see in relatively

technical organizations making aggressive use of data for machine-
learning driven applications like customer targeting. In these organi-
zations, data analysts make extensive use of flexible tools for data

preparation and visualization and often have some SQL skills, while
data scientists actively prototype and develop custom software for
machine learning applications.

Janet is an analyst in the Customer Satisfaction department at a
large bank. She suspects that the social network behavior of cus-
tomers can predict if they are likely to close their accounts (customer
churn). Janet has access to a rich context-service-enabled data lake
and a wide range of tools that she can use to assess her hypothesis.

Janet begins by downloading a free sample of a social media
feed. She uses an advanced data catalog application (we’ll call it
“Catly”) which connects to Ground, recognizes the content of her
sample, and notifies her that the bank’s data lake has a complete
feed from the previous month. She then begins using Catly to
search the lake for data on customer retention: what is available,
and who has access to it? As Janet explores candidate schemas and
data samples, Catly retrieves usage data from Ground and notifies
her that Sue, from the data-science team, had previously used a
database table called cust_roster as input to a Python library
called cust_churn. Examining a sample from cust_roster and
knowing of Sue’s domain expertise, Janet decides to work with that
table in her own churn analysis.

Having collected the necessary data, Janet turns to a data prepa-
ration application (“Preply”) to clean and transform the data. The
social media data is a JSON document; Preply searches Ground
for relevant wrangling scripts and suggests unnesting attributes and
pivoting them into tables. Based on security information in Ground,
Preply warns Janet that certain customer attributes in her table are
protected and may not be used for customer retention analysis. Fi-
nally, to join the social media names against the customer names,
Preply uses previous wrangling scripts registered with Ground by
other analysts to extract standardized keys and suggest join condi-
tions to Janet.

Having prepared the data, Janet loads it into her BI charting tool
and discovers a strong correlation between customer churn and
social sentiment. Janet uses the “share” feature of the BI tool to
send it to Sue; the tool records the share in Ground.

Sue has been working on a machine learning pipeline for auto-
mated discount targeting. Janet’s chart has useful features, so Sue
consults Ground to find the input data. Sue joins Janet’s dataset into
her existing training data but discovers that her pipeline’s prediction
accuracy decreases. Examining Ground’s schema for Janet’s dataset,
Sue realizes that the sentiment column is categorical and needs
to be pivoted into indicator columns isPositive, isNegative,
and isNeutral. Sue writes a Python script to transform Janet’s
data into a new file in the required format. She trains a new ver-
sion of the targeting model and deploys it to send discount offers
to customers at risk of leaving. Sue registers her training pipeline
including Janet’s social media feeds in the daily build; Ground is
informed of the new code versions and service registration.

After several weeks of improved predictions, Sue receives an alert
from Ground about changes in Janet’s script; she also sees a notable
drop in prediction accuracy of her pipeline. Sue discovers that some
of the new social media messages are missing sentiment scores. She
queries Ground for the version of the data and pipeline code when
sentiment scores first went missing. Upon examination, she sees that
the upgrade to the sentiment analysis code produced new categories
for which she doesn’t have columns (e.g., isAngry, isSad, . . .).
Sue uses Ground to roll back the sentiment analysis code in Janet’s
pipeline and re-run her pipeline for the past month. This fixes Sue’s
problem, but Sue wonders if she can simply roll back Janet’s scripts
in production. Consulting Ground, Sue discovers that other pipelines
now depend upon the new version of Janet’s scripts. Sue calls a
meeting with the relevant stakeholders to untangle the situation.

Throughout our scenario, the users and their applications ben-
efited from global data context. Applications like Catly and Pre-
ply were able to provide innovative features by mining the “tribal
knowledge” captured in Ground: recommending datasets and code,
identifying experts, flagging security concerns, notifying developers
of changes, etc. The users were provided contextual awareness
of both technical and organizational issues and able to interrogate
global context to understand root causes. Many of these features
exist in isolated applications today, but would work far better with
global context. Data context services make this possible, opening
up opportunities for innovation, efficiency and better governance.

2.2 Scenario: Big Data in Enterprise IT
Many organizations are not as technical as the one in our previous

scenario. We received feedback on an early draft of this paper from
an IT executive at a global financial services firm (not affiliated with
the authors), who characterized both Janet and Sue as “developers”
not analysts. (“If she knows what JSON is, she’s a developer!”) In
his organization, such developers represent less than 10% of the data
users. The remaining 90% interact solely with graphical interfaces.
However, he sees data context offering enormous benefits to his
organization. Here we present an illustrative enterprise IT scenario.

Mark is an Data Governance manager working in the IT de-
partment of a global bank. He is responsible for a central data
warehouse, and the legacy systems that support it, including Extract-
Transform-Load (ETL) mappings for loading operational databases
into the warehouse, and Master Data Management (MDM) systems
for governing the “golden master” of various reference data sets
(customers, partner organizations, and so on.) Recently, the bank
decided to migrate off of these systems and onto a Big Data stack,
to accomodate larger data volumes and greater variety of data. In
so doing, they rewrote many of their workflows; the new workflows
register their context in Ground.

Sara is an analyst in the bank’s European Compliance office; she
uses Preply to prepare monthly reports for various national govern-
ments demonstrating the firm’s compliance with regulations like
Basel III [35]. As Sara runs this month’s AssetAllocation
report, she sees that a field called IPRE_AUSNZ came back with a
very small value relative to other fields prefixed with IPRE. She sub-
mits a request to the IT department’s trouble ticket system (“Helply”)
referencing the report she ran, asking “What is this field? What are
the standard values? If it is unusual, can you help me understand
why?” Mark receives the ticket in his email, and Helply stores
an association in Ground between Sara and AssetAllocation.
Mark looks in Ground at summary statistics for the report fields
over time, and confirms that the value in that field is historically low
by an order of magnitude. Mark then looks at a “data dictionary”
of reference data in Ground and sees that IPRE was documented
as “Income-Producing Real Estate”. He looks at lineage data in
Ground and finds that the IPRE_AUSNZ field in the report is calcu-
lated by a SQL view aggregating data from both Australia and New
Zealand. He also looks at version information for the view behind
AssetAllocation, and finds that the view was modified on the
second day of the month to compute two new fields, IPRE_AUS
and IPRE_NZ that separate the reporting across those geographies.
Mark submits a response in Helply that explains this to Sara. Armed
with that information, Sara uses the Preply UI to sum all three fields
into a single cell representing the IPRE calculation for the pair of
countries over the course of the full month.

Based on the Helply association, Sara is subscribed automati-
cally to an RSS feed associated with AssetAllocation. In
future, Sara will automatically learn about changes that affect the
report, thanks to the the new workloads from Mark’s team that auto-

generate data lineage in Ground. Mark’s team takes responsibility
for upstream reporting of version changes to data sources (e.g. ref-
erence data) and code (ETL scripts, warehouse queries, etc), as well
as the data lineage implicit in that code. Using that data lineage, a
script written by Mark’s team auto-computes downstream Helply
alerts for all data products that depend transitively on a change to
upstream data and scripts.

In this scenario, both the IT and business users benefit from var-
ious kinds of context stored in Ground, including statistical data
profiles, data dictionaries, field-level data lineage, code version his-
tory, and (transitive) associations between people, data, code and
their versions. Our previous data science use cases largely exploited
statistical and probabilistic aspects of context (correlations, recom-
mendations); in this scenario, the initial motivation was quantitative,
but the context was largely used in more deterministic and discrete
ways (dependencies, definitions, alerts). Over time time, we believe
organizations will leverage data context using both deterministic
and probabilistic approaches.

3. DESIGN AND ARCHITECTURE
In a decoupled architecture of multiple applications and backend

services, context serves as a “narrow waist”—a single point of
access for the basic information about data and its usage. It is hard
to anticipate the breadth of applications that could emerge. Hence
we were keen in designing Ground to focus on initial decisions that
could enable new services and applications in future.

3.1 Design Requirements
In our design, we were guided by Postel’s Law of Robustness

from Internet architecture: “Be conservative in what you do, be
liberal in what you accept from others.” Guided by this philosophy,
we identified four central design requirements for a successful data
context service.

Model-Agnostic. For a data context service to be broadly adopted,
it cannot impose opinions on metadata modeling. Data models
evolve and persist over time: modern organizations have to manage
everything from COBOL data layouts to RDBMS dumps to XML,
JSON, Apache logs and free text. As a result, the context service
cannot prescribe how metadata is modeled—each dataset may have
different metadata to manage. This is a challenge in legacy “master
data” systems, and a weakness in the Big Data stack today: Hive
Metastore captures fixed features of relational schemas; HDFS cap-
tures fixed features of files. A key challenge in Ground is to design
a core metamodel that captures generic information that applies to
all data, as well as custom information for different data models,
applications, and usage. We explore this issue in Section 3.3.

Immutable. Data context must be immutable; updating stored
context is tantamount to erasing history. There are multiple reasons
why history is critical. The latest context may not always be the
most relevant: we may want to replay scenarios from the past for
what-if analysis or debugging, or we may want to study how context
information (e.g., success rate of a statistical model) changes over
time. Prior context may also be important for governance and
veracity purposes: we may be asked to audit historical behavior and
metadata, or reproduce experimental results published in the past.
This simplifies record-keeping, but of course it raises significant
engineering challenges. We explore this issue in Section 4.

Scalable. It is a frequent misconception that metadata is small.
In fact, metadata scaling was already a challenge in previous-
generation ETL technology. In many Big Data settings, it is
reasonable to envision the data context being far larger than the data

COMMON  
GROUND

Information 
Extraction

Catalog & 
Discovery

Wrangling & 
ETL

Analytics & 
Visualization

Reference 
Data

Security 
Auditing

Reproducibility

Model 
Serving

Crawling &  
Ingest

Search 
Index

Scheduling & 
Workflow

Versioned 
Storage

Authentication &  
Authorization

UNDERGROUND API TO SERVICES

ABOVEGROUND API TO APPLICATIONS

METAMODEL

Figure 1: The architecture of Ground. The Common Ground metamodel (Section 3.3) is at the center, supported by a set of swappable
underground services. The system is intended to support a growing set of aboveground applications, examples of which are shown. Ground
is decoupled from applications and services via asynchronous messaging services. Our initial concrete instantiation of this architecture,
Ground 0, is described in Section 4.

itself. Usage information is one culprit: logs from a service can
often outstrip the data managed by the service. Another is data
lineage, which can grow to be extremely large depending on the
kind of lineage desired [8]. Version history can also be substantial.
We explore these issues in Section 4 as well.

Politically Neutral. Common narrow-waist service like data con-
text must interoperate with a wide range of other services and sys-
tems designed and marketed by often competing vendors. Customers
will only adopt and support a central data context service if they
feel no fear of lock-in; application writers will prioritize support
for widely-used APIs to maximize the benefit of their efforts. It is
important to note here that open source is not equivalent to political
neutrality; customers and developers have to believe that the project
leadership has strong incentives to behave in the common interest.

Based on the requirements above, the Ground architecture is in-
formed by Postel’s Law of Robustness and the design pattern of
decoupled components. At its heart is a foundational metamodel
called Common Ground with an associated aboveground API for
data management applications like the catalog and wrangling ex-
amples above. The core functions underneath Ground are provided
by swappable component services that plug in via the underground
API. A sketch of the architecture of Ground is provided in Figure 1.

3.2 Key Services
Ground’s functionality is backed by five decoupled subservices,

connected via direct REST APIs and a message bus. For agility, we
are starting the project using existing open source solutions for each
service. We anticipate that some of these will require additional
features for our purposes. In this section we discuss the role of
each subservice, and highlight some of the research opportunities
we foresee. Our initial choices for subservices are described in
Section 4.

Ingest: Insertion, Crawlers and Queues. Metadata may be
pushed into Ground or require crawling; it may arrive interactively
via REST APIs or in batches via a message bus. A main design
decision is to decouple the systems plumbing of ingest from an
extensible set of metadata and feature extractors. To this end,
ingest has both underground and aboveground APIs. New context
metadata arrives for ingestion into Ground via an underground
queue API from crawling services, or via an aboveground REST

API from applications. As metadata arrives, Ground publishes
notifications via an aboveground queue. aboveground applications
can subscribe to these events to add unique value, fetching the
associated metadata and data, and generating enhanced metadata
asynchronously. For example, an application can subscribe
for file crawl events, hand off the files to an entity extraction
system like OpenCalais or AlchemyAPI, and subsequently tag
the corresponding Common Ground metadata objects with the
extracted entities.

Metadata feature extraction is an active research area; we hope
that commodity APIs for scalable data crawling and ingest will drive
more adoption and innovation in this area.

Versioned Metadata Storage. Ground must be able to efficiently
store and retrieve metadata with the full richness of the Common
Ground metamodel, including flexible version management of code
and data, general-purpose model graphs and lineage storage. While
none of the existing open source DBMSs target this data model, one
can implement it in a shim layer above many of them. We discuss
this at greater length in Section 4.1, where we examine a range
of widely-used open source DBMSs. As noted in that section, we
believe this is an area for significant database research.

Search and Query. Access to context information in Ground is
expected to be complex and varied. As is noted later, Common
Ground supports arbitrary tags, which leads to a requirement for
search-style indexing that in current open source is best served by
an indexing service outside the storage system. Second, intelligent
applications like those in Section 2 will run significant analytical
workloads over metadata—especially usage metadata which could
be quite large. Third, the underlying graphs in the Common Ground
model require support for basic graph queries like transitive closures.
Finally, it seems natural that some workloads will need to combine
these three classes of queries. As we explore in Section 4.1, various
open-source solutions can address these workloads at some level,
but there is significant opportunity for research here.

Authentication and Authorization. Identity management and au-
thorization are required for a context service, and must accommodate
typical packages like LDAP and Kerberos. Note that authorization
needs vary widely: the policies of a scientific consortium will differ
from a defense agency or a marketing department. Ground’s flexible
metamodel can support a variety of relevant metadata (ownership,

C: Version Graphs

A: Model Graphs

B: Lineage Graphs

Figure 2: The Common Ground metamodel.

content labels, etc.) Meanwhile, the role of versioning raises subtle
security questions. Suppose the authorization policies of a past time
are considered unsafe today—should reproducibility and debugging
be disallowed? More research is needed integrate versions and lin-
eage with security techniques like Information Flow Control [26] in
the context of evolving real-world pipelines.

Scheduling, Workflow, Reproducibility. We are committed to en-
suring that Ground is flexible enough to capture the specification
of workflows at many granularities of detail: from black-box con-
tainers to workflow graphs to source code. However, we do not
expect Ground to be a universal provider of workflow execution or
scheduling; instead we hope to integrate with a variety of schedulers
and execution frameworks including on-premises and cloud-hosted
approaches. This is currently under design, but the ability to work
with multiple schedulers has become fairly common in the open
source Big Data stack, so this may be a straightforward issue.

3.3 The Common Ground Metamodel
Ground is designed to manage both the ABCs of data context

and the design requirements of data context services. The Common
Ground metamodel is based on a layered graph structure shown in
Figure 2: one layer for each of the ABCs of data context.

3.3.1 Version Graphs: Representing Change
We begin with the version graph layer of Common Ground, which

captures changes corresponding to the C in the ABCs of data context
(Figure 3). This layer bootstraps the representation of all information
in Ground, by providing the classes upon which all other layers
are based. These classes and their subclasses are among the only
information in Common Ground that is not itself versioned; this is
why it forms the base of the metamodel.

The main atom of our metamodel is the Version, which is
simply a globally unique identifier; it represents an immutable
version of some object. We depict Versions via the small cir-
cles in the bottom layer of Figure 2. Ground links Versions into
VersionHistoryDAGs via VersionSuccessor edges indicating
that one version is the descendant of another (the short dark edges
in the bottom of Figure 2.) Type parametrization ensures that all of
the VersionSuccessors in a given DAG link the same subclass
of Versions together. This representation of DAGs captures any
partial order, and is general enough to reflect multiple different
versioning systems.
RichVersions support customization. These variants of

Versions can be associated with ad hoc Tags (key-value pairs)
upon creation. Note that all of the classes introduced above are
immutable—new values require the creation of new Versions.

External Items and Schrödinger Versioning
We often wish to track items whose metadata is managed outside

1 public class Version {
2 private String id;
3 }

5 public class VersionSuccessor<T extends Version> {
6 // the unique id of this VersionSuccessor
7 private String id;
8 // the id of the Version that originates this successor
9 private String fromId;
10 // the id of the Version that this success points to
11 private String toId;
12 }

14 public class VersionHistoryDAG<T extends Version> {
15 // the id of the Version that’s at the rootId of this DAG
16 private String itemId;
17 // list of VersionSuccessors that make up this DAG
18 private List<String> edgeIds;
19 // map of parents to children
20 private Map<String, List<String>> parentChildMap;
21 }

23 public class RichVersion extends Version {
24 // the map of Keys to Tags associated with this RichVersion
25 private Map<String, Tag> tags;
26 // the StructureVersion associated with this RichVersion
27 private String structureVersionId;
28 // the optional reference associated with this RichVersion
29 private String reference;
30 // the optional parameters if this is an external version
31 private Map<String, String> parameters;
32 // timestamp if this is an external version
33 private Instant externalAccessTimeStamp;
34 // optional cache of the external version
35 private Object cachedValue;
36 }

38 public class Tag {
39 private String versionId;
40 // the Key of the Tag
41 private String key;
42 // the optional Value of the Tag
43 private Object value;
44 // the Type of the Value if it exists
45 private GroundType valueType;
46 }

Figure 3: Java skeleton for Version classes in Common
Ground. Methods have been elided. Full code is available at
https://github.com/ground-context/ground.

of Ground: canonical examples include GitHub repositories
and Google Docs. Ground cannot automatically track these
items as they change; at best it can track observations of those
items. Observed versions of external items are represented by
optional fields in Ground’s RichVersions: the parameters

for accessing the reference (e.g., port, protocol, URI, etc.), an
externalAccessTimestamp, and an optional cachedValue.
Whenever a Ground client uses the aboveground API to access
a RichVersion with non-empty external parameters, Ground
fetches the external object and generates a new ExternalVersion

containing a new VersionID, an updated timestamp and possibly
an updated cached value. We refer to this as a Schrödinger
versioning scheme: each time we observe an ExternalVersion

it changes. This allows Ground to track the history of an external
object as perceived by Ground-enabled applications.

3.3.2 Model Graphs: Application Context
The model graph level of Common Ground provides a model-

agnostic representation of application metadata: the A of our ABCs
(Figure 4.) We use a graph model for flexibility: graphs can repre-
sent metadata entities and relationships from semistructured (JSON,
XML) and structured (Relational, Object-Oriented, Matrix) data

models. A simple graph model enables the agility of schema-on-use
at the metadata level, allowing diverse metadata to be independently
captured as ad hoc model graphs and integrated as needed over time.

The model graph is based on an internal superclass called
Item, which is simply a unique ID that can be associated
with a VersionHistoryDAG. Note that an Item is intrinsi-
cally immutable, but can capture change via its associated
VersionHistoryDAG: a fresh Version of the Item is created
whenever a Tag is changed.

Ground’s public API centers around three core object classes de-
rived from Item: Node, Edge, and Graph. Each of these subclasses
has an associated subclass in the version graph: NodeVersion,
EdgeVersion and GraphVersion. Nodes and Edges are high-
lighted in the middle layer of Figure 2, with the Nodes projected
visually onto their associated versions in the other layers.

The version graph allows for ad hoc Tags, but many applications
desire more structure. To that end, the model graph includes
a subclass of Item called Structure. A Structure is like a
schema: a set of Tags that must be present. Unlike database
schemas, the Structure class of Ground is versioned, via a
StructureVersion subclass in the version graph. If an Item

is associated with a Structure, each Version of the Item is
associated with a corresponding StructureVersion and must
define those Tags (along, optionally, with other ad hoc Tags.)
Together, Tags, Structures and StructureVersions enable
a breadth of metadata representations: from unstructured to
semi-structured to structured.

Superversions: An Implementation Detail. The Common
Ground model captures versions of relationships (e.g., Edges)
between versioned objects (e.g., Nodes). The relationships them-
selves are first-class objects with identity and tags. Implemented
naively, the version history of relationships can grow in unintended
and undesirable ways. We address that problem by underlaying
the logical Common Ground model with a physical compression
scheme combined with lazy materialization of logical versions.

Consider updating the current version of a central NodeM with
n incident Edges to neighbor Nodes. Creating a new NodeVersion

for M implicitly requires creating n new EdgeVersions, one for
each of the n incident edges, to capture the connection between the
new version of M and the (unchanged!) versions of the adjacent
nodes. More generally, the number of EdgeVersions grows as the
product of node versioning and node fanout.

We can mitigate the version factor by using a superversion, an
implementation detail that does not change the logical metamodel of
Common Ground. In essence, superversions capture a compressed
set of contiguous NodeVersions and their common adjacencies.
If we introduce k − 1 changes to version v of node M before we
change any adjacent node, there will be k logical EdgeVersions
connecting M to each of its neighbor NodeVersions. Rather than
materializing those EdgeVersions, we can use a superversion cap-
turing the relationship between each neighbor and the range [v, vk]
(Figure 5). The actual logical EdgeVersions can be materialized
on demand by the Ground runtime. More generally, in a branching
version history, a superversion captures a growing rooted subgraph
of the Versions of one Item, along with all adjacent Versions.
A superversion grows monotonically to encompass new Versions
with identical adjacencies. Note that the superversion represents
both a supernode and the adjacent edges to common nodes; direc-
tionality of the adjacent edges is immaterial.

3.3.3 Lineage Graphs: Behavior
The goal of the lineage graph layer is to capture usage information

composed from the nodes and edges in the model graph (Figure 6.)

1 public class Item<T extends Version> {
2 private String id;
3 }

5 public class NodeVersion extends RichVersion {
6 // the id of the Node containing this Version
7 private String nodeId;
8 }

10 public class EdgeVersion extends RichVersion {
11 // the id of the Edge containing this Version
12 private String edgeId;
13 // the id of the NodeVersion that this EV originates from
14 private String fromId;
15 // the id of the NodeVersion that this EV points to
16 private String toId;
17 }

19 public class GraphVersion extends RichVersion {
20 // the id of the Graph that contains this Version
21 private String graphId;
22 // the list of ids of EdgeVersions in this GraphVersion
23 private List<String> edgeVersionIds;
24 }

26 public class Node extends Item<NodeVersion> {
27 // the name of this Node
28 private String name;
29 }

31 public class Edge extends Item<EdgeVersion> {
32 // the name of this Edge
33 private String name;
34 }

36 public class Graph extends Item<GraphVersion> {
37 // the name of this Graph
38 private String name;
39 }

41 public class StructureVersion extends Version {
42 // the id of the Structure containing this Version
43 private String structureId;
44 // the map of attribute names to types
45 private Map<String, GroundType> attributes;
46 }

48 public class Structure extends Item<StructureVersion> {
49 // the name of this Structure
50 private String name;
51 }

Figure 4: Java skeleton for Model classes.

To facilitate data lineage, Common Ground depends on two specific
items— principals and workflows—that we describe here.
Principals (a subclass of Node) represent the actors that work

with data: users, groups, roles, etc. Workflows (a subclass of
Graph) represent specifications of code that can be invoked. Both
of these classes have associated Version subclasses. Any Data
Governance effort requires these classes: as examples, they are key
to authorization, auditing and reproducibility.

In Ground, lineage is captured as a relationship between two
Versions. This relationship is due to some process, either computa-
tional (a workflow) or manual (via some principal). LineageEdges
(purple arrows in the top layer of Figure 2) connect two or more
(possibly differently-typed) Versions, at least one of which is a
Workflow or Principal node. Note that LineageEdge is not
a subclass of EdgeVersion; an EdgeVersion can only connect
two NodeVersions; a LineageEdge can connect Versions from
two different subclasses, including subclasses that are not under
NodeVersion. For example, we might want to record that Sue
imported nltk.py in her churn.py script; this is captured by a
LineageEdge between a PrincipalVersion (representing Sue)

logical physical

superversion

M M

Figure 5: VersionGraph with 2 changes to a single node, in logical
and physical (superversion) representations.

1 public class LineageEdge extends RichVersion {
2 // id of the RichVersion that this LE originates from
3 private String fromId;
4 // id of the RichVersion that this LE points to
5 private String toId;
6 }

8 public class Principal extends Node {
9 }

11 public class Workflow extends Graph {
12 }

Figure 6: Java skeleton for Lineage classes.

and an EdgeVersion (representing the dependency between the
two files).

Usage data is often generated by analyzing log files, code, and/or
data, and it can become very large. There are important choices
about how and when to materialize lineage that are best left to
aboveground applications. For example, in a pure SQL environment,
the lineage of a specific tuple in a table might be materialized
physically on demand as a tree of input tuples, but the lineage for
all tuples in the table is more efficiently described logically by the
SQL query and its input tables. The Common Ground metamodel
can support both approaches depending on the granularity of Items,
Versions and LineageEdges chosen to be registered. Ground does
not dictate this choice; it is made based on the context information
ingested and the way it is used by aboveground applications.

3.3.4 Extension Libraries
The three layers of the Ground metamodel are deliberately

general-purpose and non-prescriptive. We expect aboveground
clients to define custom Structures to capture reusable application
semantics. These can be packaged under Nodes representing
shared libraries—e.g., a library for representing relational database
catalogs, or scientific collaborations. StructureVersions allow
these to be evolved over time in an identifiable manner.

3.4 Grit: An Illustrative Example
To demonstrate the flexibility and expected usage of our model,

we discuss an aboveground service we built called Grit: the Ground-
git tracker. Grit maps metadata from git repositories into Ground,
allowing users to easily associate contextual information about code
(e.g., wrangling or analysis scripts) with metadata about data (the
inputs and outputs of the script).

Consider a git repository on Github, such as
ground-context/ground. This repository’s identity is
represented by a Node in Ground (the central black circle in
Figure 7), which we will call R for the sake of discussion. Every
time a developer commits changes to the repository, git generates
a unique hash that corresponds to a new version of the repository.
Each one of these versions will be associated with a Structure

that specifies two tags, a commitHash and a commitMessage

9wxf23

ground-context
/ground

472.4KB

pom.xml

user-v1

ground-user

3e47ab

474.0KB

RF

Figure 7: An illustration of Grit metadata. The Nodes and Edges
have dotted lines; the Versions have solid lines.

(not pictured); the Structure ensures that every version of R
will have both those tags. Grit registers a hook with Github to be
notified about git commits and their hashes. Upon being notified
of a new commit hash, grit calls a Ground API to register the new
version of R; Ground stores this as a NodeVersion associated with
R, containing commitHash and commitMessage tags. The API
also allows grit to specify the commit hashes that preceded this
new version; Ground internally relates each NodeVersion to its
predecessor(s) via VersionSuccessors (the black vertical arrows
in Figure 7). Note that aboveground applications do not explicitly
create VersionSuccessors; the Ground API for registering a new
NodeVersion and its parent(s) captures information that Ground
uses to generate the VersionSuccessors internally.

To extend the example, Grit can be augmented to track files within
the repositories. Grit represents each file in Ground via a Node, with
an Edge between each file and the repository Node. Upon hearing
of a commit from Github, Grit interrogates git to determine which
files changed in that commit. For a given file F that has changed
(the large left oval in Figure 7), Grit creates a new NodeVersion

(the smaller red ovals within the larger one) with metadata about
the file (e.g., a size and checksum, not shown). Moreover, a new
EdgeVersion (solid blue arrow in Figure 7) associates the new file
version with the new repository version. Last, we can model users
(the right, green circle in Figure 7) and the actions they perform.
Once more, each user will be represented by a Node, which will be
updated whenever the attributes of the user change—normally, not
very often. There is a LineageEdge (the purple arrow in Figure 7)
that represents the changes that a user has caused in the reposi-
tory. Each LineageEdge points from the user NodeVersion to the
repository commit NodeVersion, capturing the state of the user
and the repository upoon their git commit.

The initial Grit example was chosen to be simple but useful; it can
be extended to capture more aspects of git’s metadata whenever such
detail is deemed useful to integrate with other context in Ground.
Moving beyond git, we believe that the generality of the Common
Ground metamodel will allow users to capture a wide variety of
use cases. In addition to git, we have currently developed basic
extension libraries that allow Ground to capture relational metadata
(e.g., from the Hive metastore) and file system metadata (e.g., from
HDFS). We hope that more contributions will be forthcoming given
the simplicity and utility of the Common Ground model.

4. GROUND 0
Our initial Version 0 of Ground implements the Common Ground

metamodel and provides REST APIs for interaction with the system.
Referring back to Figure 1, Ground 0 uses Apache Kafka as a
queuing service for the APIs, enabling underground services like
Crawling and Ingestion to support bulk loading via scalable queues,
and aboveground applications to subscribe to events and register
additional context information. In terms of the underground services,

Ground 0 makes use of LinkedIn’s Gobblin system for crawling
and ingest from files, databases, web sources and the like. We have
integrated and evaluated a number of backing stores for versioned
storage, including PostgreSQL, Cassandra, TitanDB and Neo4j; we
report on results later in this section. We are currently integrating
ElasticSearch for text indexing and are still evaluating options for
ID/Authorization and Workflow/Scheduling.

To exercise our initial design and provide immediate functionality,
we built support for three sources of metadata most commonly used
in the Big Data ecosystem: file metadata from HDFS, schemas from
Hive, and code versioning from git. To support HDFS, we extended
Gobblin to extract file system metadata from its HDFS crawls and
publish to Ground’s Kafka connector. The resulting metadata is then
ingested into Ground, and notifications are published on a Kafka
channel for applications to respond to. To support Hive, we built
an API shim that allows Ground to serve as a drop-in replacement
for the Hive Metastore. One key benefit of using Ground as Hive’s
relational catalog is Ground’s built-in support for versioning, which—
combined with the append-only nature of HDFS—makes it possible
to time travel and view Hive tables as they appeared in the past. To
support git, we have built crawlers to extract git history graphs as
ExternalVersions in Ground. These three scenarios guided our
design for Common Ground.

Having initial validation of our metamodel on a breadth of scenar-
ios, our next concern has been the efficiency of storing and querying
information represented in the Common Ground metamodel, given
both its general-purpose model graph layer, and its support for ver-
sioning. To get an initial feeling for these issues, we began with two
canonical use cases:

Proactive Impact Analysis. A common concern in managing op-
erational data pipelines is to assess the effects of a code or schema
change on downstream services. As a real-world model for this use
case, we took the source code of Apache Hadoop and constructed
a dependency graph of file imports that we register in Ground. We
generate an impact analysis workload by running transitive clo-
sure starting from 5,000 randomly chosen files, and measuring the
average time to retrieve the transitively dependent file versions.

Dwell Time Analysis. In the vein of the analysis pipeline Sue
manages in Section 2, our second use case involves an assessment
of code versions on customer behavior. In this case, we study how
user “dwell time” on a web page correlates with the version of the
software that populates the page (e.g., personalized news stories).
We used a sizable real-world web log [32], but had to simulate
code versions for a content-selection pipeline. To that end we
wanted to use real version history from git; in the absence of content-
selection code we used the code repository for the Apache httpd
web server system. Our experiment breaks the web log into sessions
and artificially maps each session to a version of the software. We
run 5,000 random queries choosing a software version and looking
up all of its associated sessions.

While these use cases are less than realistic both in scale and in
actual functionality, we felt they would provide simple feasibility
results for more complex use cases.

4.1 Initial Experiences
To evaluate the state of off-the-shelf open source, we chose lead-

ing examples of relational, NoSQL, and graph databases. All bench-
marks were run on a single Amazon EC2 m4.xlarge machine with
4 CPUs and 16GB of RAM. Our initial goal here was more experien-
tial than quantitative—we wanted to see if we could easily get these
systems to perform adequately for our use cases and if not, to call
more attention to the needs of a system like Ground. We acknowl-

Figure 8: Dwell time analysis. Figure 9: Impact analysis.

Figure 10: PostgreSQL transitive closure variants.

edge that with further tuning, these systems might perform better
than they did in our experiments, though we feel these experiments
are rather fundamental and should not require extensive tuning.

PostgreSQL. We normalize the Common Ground entities
(Item, Version, etc.) into tables, and the relationships (e.g.,
EdgeVersion) into tables with indexes on both sides. The dwell
time analysis amounts to retrieving all the sessions corresponding
to a server version; it is simply a single-table look-up through an
index. The result set was on the order of 100s of nodes per look-up.

For the impact analysis experiment, we compared three Post-
greSQL implementations. The first was a WITH RECURSIVE query.
The second was a UDF written in PGPLSQL that computed the paths
in a (semi-naïve) loop of increasing length. The last was a fully-
expanded 6-way self-join that computed the paths of the longest
possible length. Figure 10 compares the three results; surprisingly,
the UDF loop was faster than the native SQL solutions. Figure 9
shows that we were unable to get PostgreSQL to be within an order
of magnitude of the graph processing systems.

Cassandra. In Cassandra, every entity and relationship from the
Common Ground model is represented as a key/value pair, indexed
by key. The Cassandra dwell time analysis query was identical
to the Postgres query: a single table look-up which was aided by
an index. Cassandra doesn’t support recursive queries; for impact
analysis, we wrapped Cassandra with JGraphT, an in-memory Java
graph-processing library. We did not count the time taken to load
the graph into JGraphT from Cassandra, hence Figure 9 shows a
very optimistic view of Cassandra’s performance for this query.

Neo4j. Neo4j is a (single-server) graph database, so modeling the
Common Ground graphs was straightforward. The average Neo4j
dwell time analysis was fast; the first few queries were markedly
slow (∼10 seconds), but subsequent queries were far faster, presum-
ably due to caching. Neo4j excelled on transitive closure, perform-
ing only 50% slower than in-memory JGraphT.

TitanDB. TitanDB is a scale-out graph database designed to run
over a NoSQL database like Cassandra, which is how we deployed
it in our experiments on a single machine. Once again, mapping our
graph-based model into TitanDB was straightforward. TitanDB’s
dwell time analysis performance was significantly slower than the
rest of the systems, despite indexing. The impact analysis query was

significantly faster than any Postgres implementation but was still
an order of magnitude slower than Neo4j and JGraphT.

Performance across systems differs significantly in our simple dwell
time analysis lookups, but eve bigger divergence is seen in the im-
pact analysis workload. We can expect impact analysis to traverse a
small subgraph within a massive job history. Queries on small sub-
graphs should be very fast—ideally as fast as an in-memory graph
system [23]. JGraphT-over-Cassandra and Neo4j provide a baseline,
though neither solution scales beyond one server. PostgreSQL and
TitanDB do not appear to be viable even for these modest queries.
Of these systems, only Cassandra and TitanDB are designed to scale
beyond a single server.

5. RELATED WORK
Work related to this paper comes in a variety of categories. A

good deal of related work is based out of industry and open source,
and not well documented in the research literature; for these projects
we do not provide citations, but a web search should be sufficient to
locate code repositories or product descriptions.

Classic commercial Master Data Management and ETL solutions
were not designed for schema-on-use or agility. Still, they influenced
our thinking and many of their features should be supported by
Ground [21]. The Clio project is a good example of research work
on this class of schema-centric data integration [25]. Much of this
work could sit in aboveground application logic and be integrated
with other forms of data context.

Closer to our vision are the repository systems explored in the
1990’s [3]. Those systems are coupled to the programming move-
ments of their time; for example, Microsoft Repository’s primary
technical goal is to “fit naturally into Microsoft’s existing object ar-
chitecture, called the Component Object Model (COM)” [2]. While
our explicit goal here is to avoid prescribing a specific modeling
framework, a number of the goals and technical challenges of those
efforts presage our discussion here, and it is useful to have those
systems as a point of reference.

Two emerging metadata systems are addressing governance
for the open-source Big Data stack: Cloudera Navigator and the
Hortonworks-led Apache Atlas. Both provide graph models that
inspired Common Ground’s application context model graph.
They are both focused on the specifics of running jobs in today’s
Hadoop stacks, and provide relatively prescriptive metamodels
for entities in those stacks. They do not provide versioning or
provisions for integration with code repositories, and neither is
perceived as vendor-neutral. LinkedIn WhereHows, FINRA Herd
and Google Goods [16] are metadata services built to support the
evolving data workflows in their respective organizations. Goods is
a particularly well-documented and mature system, bundling what
we call underground services with various proprietary services we
might describe as aboveground applications.

There are a number of projects that bundle prescriptive models of
metadata into interesting aboveground application use cases. Open-
Chorus and LabBook [19] provide portals for collaboration on data
projects, including user interfaces and backing metamodels. Like
many of the systems mentioned above, LabBook also uses a graph
data model, with specific entities and relationships that capture its
particular model of data collaboration. Vistrails [7] is a scientific
workflow and provenance management system that shares some of
the same goals, with a focus on scientific reproducibility. These sys-
tems are designed for particular use cases, and differ fundamentally
from Ground’s goals of being a standalone context management sys-
tem in a decoupled stack. However these systems provide a range
of examples of the kind of aboveground applications that Ground

should support naturally. There has recently been a great deal of
uptake in data science “notebook” tools modeled on Mathematica’s
Notebook—this includes the Jupyter and Zeppelin projects. Various
collaborative versions of these notebooks are under development
from open source and commercial groups, but the focus seems to be
on collaborative editing; rich integration with a data context system
like Ground could be quite interesting.

DataHub [4] is a research project that offers hosted and versioned
storage of datasets, much like GitHub hosts code. Most of the
DataHub research has focused on git-style checkout/checkin ver-
sioning of relational tables (e.g., [22]). Those ideas may be useful
in the design of a new storage system for the versioned information
that Ground needs to store, though it remains unclear if their spe-
cific versioning model will serve our general needs. A very recent
technical report on ProvDB [24] echoes some of Ground’s vision
of coupling versioning and lineage, and proposes an architectural
shim on top of a versioned store like git or DataHub. ProvDB
proposes a flexible graph database for storage, but provides a some-
what prescriptive metamodel for files, actions on files, and so on.
ProvDB also proposes schemes to capture activities automatically
from a UNIX command shell. In this it is similar to projects like
Burrito [15] and ReproZip [9].

Ground differs from the above systems in the way it factors out the
ABCs of data context in a simple, flexible metamodel provided by a
standalone service. Most of the other systems either limit the kind
of context they support, or bundle context with specific application
scenarios, or both. A key differentiator in Common Ground is the
effort to be model-agnostic with respect to Application metadata:
unlike many of the systems above, the Common Ground metamodel
does not prescribe a specific data model, nor declare specific entity
types and the way they should be represented. Of course many of
the individual objectives of Ground do overlap in one way or another
with the related work above, and we plan to take advantage of good
ideas in the open literature as the system evolves in open source.

There is a broad space of commercial efforts that hint at the
promise of data context—they could both add context and bene-
fit from it. This category includes products for data preparation,
data cataloging, collaboration, query and workflow management,
information extraction, ontology management, etc. Rather than at-
tempting to enumerate vendors and products, we refer the reader to
relevant market studies, like Dresner’s Wisdom of Crowds survey
research [12, 11], or reports from the likes of Gartner [31, 29, 13].

The frequent use of graph data models in these systems raises
the specter of connections to the Semantic Web. To be clear, the
Common Ground metamodel (much like the metamodels of the
other systems mentioned above) is not trying to represent a knowl-
edge graph per se; it does not prescribe RDF-like triple formats
or semantic meanings like “subjects”, “predicates” or “objects”. It
is much closer to a simple Entity-Relationship model: a generic
data modeling framework that can be used for many purposes, and
represent metadata from various models including RDF, relational,
JSON, XML, and so on.

6. FUTURE WORK
In the spirit of agility, we view Ground as a work in progress. Our

intent is to keep Common Ground simple and stabilize it relatively
quickly, with evolution and innovation happening largely outside
the system core. A principal goal of ground is to facilitate contin-
ued innovation from the community: in systems belowground, and
algorithms and interfaces aboveground.

6.1 Common Ground
Within Ground proper, we want to make it increasingly easy to

use, by offering developers higher levels of abstraction for the exist-
ing Common Ground API. One direction we envision is a library of
common “design patterns” for typical data models. Many of the use
cases we have encountered revolve around relational database meta-
data, so a design pattern for easily registering relational schemas
is an obvious first step, and one that can build on our experience
with our Hive metastore implementation. A related direction we
hope to pursue is a more declarative interface for specifying models,
involving simple relationships and constraints between collections
or object classes. This would be a good fit for capturing meta-
data from typical database-backed applications, like those that use
Object-Relational Mappings. From such high-level specifications,
Ground could offer default (but customizable) logic for managing
versioning and lineage.

6.2 Underground
As we emphasize above, we see open questions regarding the

suitability of current database systems for the needs of data context.
Our initial assessment suggests a need for more work: both a deeper
evaluation of what exists and very likely designs for something new.

Part of the initial challenge is to understand relevant workloads for
Ground deployments. Our examples to date are limited, but given
the diverse participants in the early stage of the project we look for-
ward to a quick learning curve. Three simple patterns have emerged
from early discussion: tag (attribute) search, wrangling/analysis of
usage logs, and traversal (especially transitive closure) of graphs for
lineage, modeling and version history. The right solution for this ini-
tial workload today is unclear on a number of fronts. First, existing
systems for the three component workloads are quite different from
each other; there is no obvious single solution. Second, there are no
clear scalable open source “winners” in either log or graph process-
ing. Leading log processing solutions like Splunk and SumoLogic
are closed-source and the area is not well-studied in research. There
are many research papers and active workshops on graph databases
(e.g., [5]), but we found the leading systems lacking. Third, we are
sensitive to the point that some problems—especially in graphs—
prove to be smaller than expected, and “database” solutions can end
up over-engineered for most use cases [23].

Another challenge is our desire to maintain version history over
time. Interest in no-overwrite databases has only recently reemerged,
including DataHub [4] and the Datomic, Pachyderm and Noms
open source systems. Our early users like the idea of versioning,
but were clear that it will not be necessary in every deployment.
Even when unbounded versioning is feasible it is often only worth
supporting via inexpensive deep storage services. As a result, we
cannot expect to provide excellent performance on general ad-hoc
temporal queries; some tradeoffs will have to be made to optimize
for common high-value usage.

A cross-cutting challenge in any of these contexts is the consis-
tency or transactional semantics across underground subsystems.
This is particularly challenging if databases or indices are federated
across different components.

6.3 Aboveground
There is a wide range of application-level technology that we

would like to see deployed in a common data context environment.

Context Extraction. One primary area of interest is extracting
context from raw sources. Schema extraction is one important
example, in a spectrum from automated techniques [6, 1] to human-
guided metadata wrangling [18, 20]. Another is entity extraction
and resolution from data, and the broader category of knowledge-
base construction; examples citations here include DeepDive [27]
and YAGO [33]. Turning from data to code, work on extracting

data lineage is broad and ranges from traditional database prove-
nance in SQL [8] to information flow control in more imperative
languages [26] to harnesses for extracting behavior from command-
line workflows [15, 9]. All of these technologies can provide useful
data context in settings where today there is none; some of these
techniques should be designed to improve if trained on context from
other applications.

User Exhaust. The above are all explicit efforts to drive context
extraction “bottom-up” from raw sources. However we suspect
that the most interesting context comes from users solving specific
problems: if somebody spends significant time with data or code,
their effort is usually reflecting the needs of some high-value appli-
cation context. Thus we’re very excited about capturing “exhaust”
from data-centric tools. Tools for data wrangling and integration
are of particular interest because they exist in a critical stage of the
data lifecycle, when users are raising the value of “raw” data into
a meaningful “cooked” form that fits an application context that
may be otherwise absent from the data. Notebooks for exploratory
data analysis provide similar context on how data is being used,
particularly in their native habitat of technical environments with
relatively small datasets. Visualization and Business Intelligence
tools tend to work with relatively refined data, but can still provide
useful clues about the ways in which data is being analyzed—if for
no other purpose than to suggest useful visualizations to other users.

Socio-Technical Networks. In all of these “data exhaust” cases,
there is a simple latent usage relationship: the linkage between a
users, applications and datasets. We hypothesize that tracking the
network of this usage across an organization can provide significant
insights into the way an organization functions—and ways it can
be improved. We are not the first to suggest that the socio-technical
network behavior of a data-centric organization has value (see, e.g.,
collaborative visual analysis [36, 37]). Yet to date the benefits
of “collective intelligence” in data organizations have not been
widespread in software. It is an open question why this is this case.
One possibility is scale—we have yet to observe deployments where
there is enough recorded data usage to produce a signal. This should
be improving quickly. Another is the historically siloed nature
of application context, which a service like Ground can improve.
Finally, we are only now seeing the widespread deployment of
intelligent applications that can actually surface the value of context:
e.g. to suggest data sets, transformations or visualizations.

Ground is an environment not only to collect data context, but
to offer it up via a uniform API so applications can demonstrate its
utility. We believe this can be a virtuous cycle, where innovative ap-
plications that are “good citizens” in generating contextual metadata
will likely benefit from context as well.

In addition, the socio-technical network around data may help
redefine organizational structure and roles, as emergent behavior
is surfaced. For example, it is natural to assume that data cura-
tors will surface organically around certain data sets, and official
responsibilities for data curation will flow from natural propensities
and expertise. Similar patterns could emerge for roles in privacy
and security, data analysis and data pipeline management—much
as communities form around open source software today. In a real
sense, these emergent socio-technical networks of data usage could
help define the organizational structures of future enterprises.

Governance and Reproducibility. Data governance sounds a bit
drab, but it is critical to organizations that are regulated or otherwise
responsible to data producers—often individual members of soci-
ety with little technical recourse. Simple assurances like enforcing
access control or auditing usage become extremely complex for
organizations that deploy networks of complex software across mul-

tiple sites and sub-organizations. This is hard for well-intentioned
organizations, and opaque for the broader community. Improve-
ments to this state of practice would be welcome on all fronts. To
begin, contextual information needs to be easy to capture in a com-
mon infrastructure. Ground is an effort to enable that beginning, but
there is much more to be done in terms of capturing and authenti-
cating sufficient data lineage for governance—whether in legacy or
de novo systems.

Closer to home in the research community, apparently simple
tasks like reproducing purely software-driven experiments prove
increasingly difficult. We of course have to deal with versions
of our own software as well as language libraries and operating
systems. Virtualization technologies like containers and virtual
machines prevent the need to reproduce hardware, but add their own
complexities. It is a wide open question how best to knit together
all the moving parts of a software environment for reproducibility,
even using the latest tools: software version control systems like git,
container systems like docker, virtual machines, and orchestration
languages like Kubernetes—not to mention versioned metadata and
data, for which there are no popular tools yet. We hope Ground can
provide a context where these systems can be put together and these
issues explored.

Managing Services That Learn. Services powered by machine
learning are being widely deployed, with applications ranging from
content recommendation to risk management and fraud detection.
These services depend critically on up-to-date data to train accu-
rate models. Often these data are derived from multiple sources
(e.g., click streams, content catalogs, and purchase histories). We
believe that by connecting commonly used modeling frameworks
(e.g., scikit-learn and TensorFlow) to Ground we will be able to help
developers identify the correct data to train models and automati-
cally update models as new data arrives. Furthermore, by registering
models directly with Ground, developers will be able to get help
tracking and addressing many of the challenges in production ma-
chine learning outlined by Sculley et al. in [30], which focus in
large part on dependencies across data, code and configuration files.

Once deployed, machine learning services are notoriously dif-
ficult to manage. An interesting area of future research will be
connecting prediction serving platforms (e.g., Velox [10] and Ten-
sorFlow Serving [34]) to Ground. Integration with Ground will
enable prediction serving systems to attribute prediction errors to
the corresponding training data and improve decision auditing by
capturing the context in which decisions were made. Furthermore,
as prediction services are composed (e.g., in predicting musical
genres and ranking songs), Ground can provide a broader view of
these services and help to isolate failing models.

7. CONCLUSION
Data context services are a critical missing layer in today’s Big

Data stack, and deserve careful consideration given the central role
they can play. They also raise interesting challenges and oppor-
tunities spanning the breadth of database research. The basic de-
sign requirements—model-agnostic, immutable, scalable services—
seem to present new database systems challenges underground.
Meanwhile the aboveground opportunities for innovation cover a
broad spectrum from human-in-the-loop applications, to dataset
and workflow lifecycle management, to critical infrastructure for
IT management. Ground is a community effort to build out this
roadmap—providing useful open source along the way, and an envi-
ronment where advanced ideas can be explored and plugged in.

Acknowledgments
Thanks to Alex Rasmussen for feedback on early drafts of this
paper, and to Hemal Gandhi for input on Common Ground APIs and
supernodes. Thanks also to Frank Nothaft for ideas and perspective
from biosciences, and to David Patterson for early support of the
project. This work was supported in part by a grant from the National
Institutes of Health 5417070-5500000722.

8. REFERENCES
[1] M. D. Adelfio and H. Samet. Schema extraction for tabular

data on the web. Proceedings of the VLDB Endowment,
6(6):421–432, 2013.

[2] P. A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders,
and D. Shutt. Microsoft repository version 2 and the open
information model. Information Systems, 24(2):71–98, 1999.

[3] P. A. Bernstein and U. Dayal. An overview of repository
technology. In VLDB, volume 94, pages 705–713, 1994.

[4] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande,
A. J. Elmore, S. Madden, and A. G. Parameswaran. DataHub:
Collaborative data science & dataset version management at
scale. In CIDR, 2015.

[5] P. Boncz and J. Larriba-Pey, editors. International Workshop
on Graph Data Management Experiences and Systems
(GRADES). ACM, 2016.

[6] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
WebTables: Exploring the power of tables on the web.
Proceedings of the VLDB Endowment, 1(1):538–549, 2008.

[7] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T.
Silva, and H. T. Vo. VisTrails: Visualization meets data
management. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
745–747. ACM, 2006.

[8] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in
Databases. Now Publishers Inc, 2009.

[9] F. S. Chirigati, D. E. Shasha, and J. Freire. ReproZip: Using
provenance to support computational reproducibility. In
Workshop on the Theory and Practice of Provenance (TaPP),
2013.

[10] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J.
Franklin, A. Ghodsi, and M. I. Jordan. The missing piece in
complex analytics: Low latency, scalable model management
and serving with velox. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems, 2015.

[11] H. Dresner. 2016 Collective Insights Market Study Report.
Technical report, Dresner Advisory Services, LLC, 2016.

[12] H. Dresner. 2016 End User Data Preparation Market Study.
Technical report, Dresner Advisory Services, LLC, 2016.

[13] A. D. Duncan, D. Laney, and G. D. Simoni. How chief data
officers can use an information catalog to maximize business
value from information assets. Technical report, Gartner, Inc.,
2016.

[14] Gartner. Gartner says every budget is becoming an IT budget,
Oct. 2012. http://www.gartner.com/newsroom/id/2208015.

[15] P. J. Guo and M. Seltzer. BURRITO: Wrapping your lab
notebook in computational infrastructure. In Workshop on the
Theory and Practice of Provenance (TaPP), 2012.

[16] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy,
and S. E. Whang. Goods: Organizing Google’s datasets. In
Proceedings of the 2016 International Conference on
Management of Data, pages 795–806. ACM, 2016.

http://www.gartner.com/newsroom/id/2208015

[17] W. H. Inmon. Building the data warehouse. John Wiley &
Sons, 2005.

[18] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 3363–3372. ACM, 2011.

[19] E. Kandogan, M. Roth, P. Schwarz, J. Hui, I. Terrizzano,
C. Christodoulakis, and R. J. Miller. LabBook:
Metadata-driven social collaborative data analysis. In Big
Data (Big Data), 2015 IEEE International Conference on,
pages 431–440. IEEE, 2015.

[20] V. Le and S. Gulwani. FlashExtract: A framework for data
extraction by examples. In ACM SIGPLAN Notices,
volume 49, pages 542–553. ACM, 2014.

[21] D. Loshin. Master Data Management. Morgan Kaufmann,
2010.

[22] M. Maddox, D. Goehring, A. J. Elmore, S. Madden,
A. Parameswaran, and A. Deshpande. Decibel: The relational
dataset branching system. Proceedings of the VLDB
Endowment, 9(9):624–635, 2016.

[23] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at
what COST? In HotOS XV, 2015.

[24] H. Miao, A. Chavan, and A. Deshpande. ProvDB: A system
for lifecycle management of collaborative analysis workflows.
arXiv preprint arXiv:1610.04963, 2016.

[25] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan, C. H.
Ho, R. Fagin, and L. Popa. The Clio project: Managing
heterogeneity. SIGMOD Record, 30(1):78–83, 2001.

[26] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
228–241. ACM, 1999.

[27] F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. DeepDive:
Web-scale knowledge-base construction using statistical
learning and inference. VLDS, 12:25–28, 2012.

[28] D. Patil. Data Jujitsu: The Art of Turning Data into Product.
O’Reilly Media, 2012.

[29] R. L. Sallam, P. Forry, E. Zaidi, and S. Vashisth. Market
Guide for Self-Service Data Preparation. Technical report,
Gartner, Inc., 2016.

[30] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, and M. Young. Machine learning:
The high interest credit card of technical debt. In SE4ML:
Software Engineering for Machine Learning (NIPS 2014
Workshop), 2014.

[31] G. D. Simoni and R. Edjlali. Magic Quadrant for Metadata
Management Solutions. Technical report, Gartner, Inc., 2016.

[32] Star Wars Kid: The Data Dump, 2008.
http://waxy.org/2008/05/star_wars_kid_the_data_dump/,
retrieved June, 2008.

[33] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of
semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, pages 697–706. ACM, 2007.

[34] TensorFlow Serving. https://tensorflow.github.io/serving.
[35] The Basel Committee. The Basel iii Accord, 2016.

http://www.basel-iii-accord.com, retrieved November, 2016.
[36] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and

M. McKeon. ManyEyes: A site for visualization at internet
scale. IEEE transactions on visualization and computer
graphics, 13(6):1121–1128, 2007.

[37] W. Willett, J. Heer, J. Hellerstein, and M. Agrawala.

CommentSpace: Structured support for collaborative visual
analysis. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 3131–3140. ACM,
2011.

http://waxy.org/2008/05/star_wars_kid_the_data_dump/
https://tensorflow.github.io/serving
http://www.basel-iii-accord.com

	From Crisis to Opportunity
	Crisis: Big Metadata
	Opportunity: Data Context

	Diverse Use Cases
	Scenario: Context-Enabled Analytics
	Scenario: Big Data in Enterprise IT

	Design and Architecture
	Design Requirements
	Key Services
	The Common Ground Metamodel
	Version Graphs: Representing Change
	Model Graphs: Application Context
	Lineage Graphs: Behavior
	Extension Libraries

	Grit: An Illustrative Example

	Ground 0
	Initial Experiences

	Related Work
	Future Work
	Common Ground
	Underground
	Aboveground

	Conclusion
	References

