Decoding from Pooled data: Sharp Information-Theoretic Bounds

Ahmed El Alaoui Theoretical ML

Consider a population consisting of n individuals, each of whom has one of d types (e.g. their blood type, in which case d=4). We are allowed to query this database by specifying a subset of the population, and in response we observe a noiseless histogram (a d-dimensional vector of counts) of types of the pooled individuals. This measurement model arises in practical situations such as pooling of genetic data and may also be motivated by privacy considerations. We are interested in the number of queries one needs to unambiguously determine the type of each individual. In this paper, we study this information-theoretic question under the random, dense setting where in each query, a random subset of individuals of size proportional to n is chosen. This makes the problem a particular example of a random constraint satisfaction problem (CSP) with a "planted" solution. We establish almost matching upper and lower bounds on the minimum number of queries m such that there is no solution other than the planted one with probability tending to 1 as n tends to infinity. Our proof relies on the computation of the exact "annealed free energy" of this model in the thermodynamic limit, which corresponds to the exponential rate of decay of the expected number of solution to this planted CSP. As a by-product of the analysis, we show an identity of independent interest relating the Gaussian integral over the space of Eulerian flows of a graph to its spanning tree polynomial.

Published On:

Presented At/In: submitted to Annals of Applied Probability (AoAP)

Link: https://arxiv.org/abs/1611.09981

Authors: Ahmed El Alaoui, Aaditya Ramdas, Michael Jordan, Florent Krzakala, Lenka Zdeborova