Debugging Distributed Systems with Why-Across-Time Provenance

Michael Whittaker

Systematically reasoning about the fine-grained causes of events in a real-world distributed system is challenging. Causality, from the distributed systems literature, can be used to compute the causal history of an arbitrary event in a distributed system, but the event's causal history is an overapproximation of the true causes. Data provenance, from the database literature, precisely describes why a particular tuple appears in the output of a relational query, but data provenance is limited to the domain of static relational databases. In this paper, we present wat-provenance: a novel form of provenance that provides the benefits of causality and data provenance. Given an arbitrary state machine, watprovenance describes why the state machine produces a particular output when given a particular input. This enables system developers to reason about the causes of events in real-world distributed systems. We observe that automatically extracting the wat-provenance of a state machine is often infeasible. Fortunately, many distributed systems components have simple interfaces from which a developer can directly specify wat-provenance using a technique we call wat-provenance specifications. Leveraging the theoretical foundations of wat-provenance, we implement a prototype distributed debugging framework called Watermelon.

Published On: October 11, 2018

Presented At/In: SOCC

Link: https://mwhittaker.github.io/publications/wat_SOCC18.pdf

Authors: Michael Whittaker, Cristina Teodoropol, Peter Alvaro, Joe Hellerstein